Transformation, Genetic

转型,遗传
  • 文章类型: Journal Article
    基因打靶(GT)允许精确操作基因组序列,如敲入和序列替换,但是种子植物中的GT仍然是一项具有挑战性的任务。已知工程化的序列特异性核酸酶(SSN)在生物体中通过同源定向修复(HDR)促进GT。这里,我们证明了Cas12a和耐温Cas12a变体(ttCas12a)可以通过顺序转化策略在拟南芥(拟南芥)的两个基因座上有效地建立精确和可遗传的GT。因此,ttCas12a显示出比未修饰的Cas12a更高的GT效率。此外,还研究了通过顺序转化策略对GT的转录和翻译增强子的效率。这些增强剂及其组合有望在顺序转化策略中显示GT效率的增加,类似于以前的一体化战略报告,但只观察到最大两倍的增加。这些结果表明,靶位点的双链断裂(DSB)频率是决定植物中GT遗传效率的最重要因素之一。另一方面,更高的DSB频率并不总是导致更高的GT效率,这表明GT通过HDR需要一些额外的因素。因此,不再期望DSB的增加能提高GT效率,未来需要建立新的战略。这项研究为植物中精确和可遗传的GT技术开辟了广泛的应用。
    Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非生物环境胁迫会对植物造成各种类型的损害,并导致产量的重大损失。植物中的非生物胁迫耐受性是指抵抗环境因素和维持生长的能力,发展,和生产。由于这种耐受性是由一个基因或一组基因控制的,这些基因在植物中的转基因激活通常会增强非生物胁迫下的耐受性。因此,本方法学章节描述了非生物应激源诱导基因所需的策略和相应的方案,将相应的cDNA克隆到质粒和农杆菌细胞中,并使用花浸方法对拟南芥植物进行遗传转化。本章还描述了评估转基因对植物耐受性影响的标准试验。最后,本章中概述的用于克隆和产生耐受非生物胁迫的转基因植物的技术是一种通用的方法,可以在各种植物物种和基因中实施。
    Abiotic environmental stressors cause various types of damage to plants and cause significant loss in yield. Abiotic stress tolerance in plants refers to the ability to withstand environmental factors and maintain growth, development, and production. Since this tolerance is controlled by a gene or a set of genes, transgenic activating of these genes in plants often enhances tolerance under abiotic stress. Therefore, this methodology chapter describes a strategy and the corresponding protocols needed to induce a gene by an abiotic stressor, clone the corresponding cDNA into plasmids and Agrobacterium cells, and genetic transformation to the Arabidopsis plants using the floral dip method. The chapter also describes standard assays to evaluate the transgene\'s effect on the plant\'s tolerance. Finally, the techniques outlined in this chapter for cloning and generating transgenic plants tolerant to abiotic stress are a versatile approach that can be implemented across various plant species and genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本章提出了一种有效的方案,用于通过从经济上重要的木瓜基因型的未成熟合子胚中通过体细胞胚发生再生番木瓜植物。为了从体细胞胚获得再生植物,在本协议中,需要四个感应周期,随后是一个增殖周期和一个再生周期。有了这个优化的协议,80%的体细胞胚可以在3.5个月内获得。在这个阶段,含有50%以上球状结构的愈伤组织可用于转化(通过农杆菌,生物物理学,或任何其他转换方法)。一旦转化,愈伤组织可以转移到以下步骤(乘法,伸长率,成熟,生根,和体外适应)以再生转化的体细胞胚来源的完整植物。
    This chapter presents an efficient protocol for regenerating Carica papaya plants via somatic embryogenesis from immature zygotic embryos from economically important papaya genotypes. To achieve regenerated plants from somatic embryos, in the present protocol, four induction cycles are required, followed by one multiplication cycle and one regeneration cycle. With this optimized protocol, 80% of somatic embryos can be obtained in only 3.5 months. At this stage, calli containing more than 50% globular structures can be used for transformation (via agrobacterium, biobalistics, or any other transformation method). Once transformed, calli can be transferred to the following steps (multiplication, elongation, maturation, rooting, and ex vitro acclimatization) to regenerate a transformed somatic embryo-derived full plant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多年来,我们的团队致力于研究一种独特的天然染料生产物种,安纳托(比萨奥雷利亚娜L.)。我们已经积累了知识并建立了基础,支持基因表达分析在理解体外形态发生再生过程中的应用。相变方面,和Bixin生物合成。此外,我们已经进行了与这些过程相关的基因编辑。该领域的进步有望增强育种实践,并有助于这种重要的木本物种的整体改进。这里,我们提出了基于体细胞胚胎发生的分步方案和利用根癌农杆菌的优化转化方案。
    Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这一章中,我们报道了应用于西番莲的组织培养的进展。我们提出了体细胞胚胎发生的可重复方案,胚乳衍生的三倍体生产,以及我们的研究团队和合作者在过去20年中产生的这种物种知识的遗传转化。我们的研究小组开创了百香果体细胞胚胎发生的工作,我们致力于描述这种形态发生途径的几个方面。此外,我们扩展了理解与西番莲发育相变相关的分子机制的可能性。还有辛辛那塔桅杆.,并提出了过表达microRNA156的转化方案。
    In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    农杆菌的旅程就像过山车,从病原体到成为强大的生物技术工具。虽然根癌为科学界提供了一种植物转化的多功能工具,发根农杆菌为研究人员提供了瑞士军刀,用于开发许多应用。这些应用范围从方法到再生植物,经常顽固不化,建立有价值的系统产生次级代谢产物的生物修复方案。本章回顾了它的发现,生物学关于其命名的争议,和一些使用根草作为平台开发的多种应用程序。
    Agrobacterium\'s journey has been a roller coaster, from being a pathogen to becoming a powerful biotechnological tool. While A. tumefaciens has provided the scientific community with a versatile tool for plant transformation, Agrobacterium rhizogenes has given researchers a Swiss army knife for developing many applications. These applications range from a methodology to regenerate plants, often recalcitrant, to establish bioremediation protocols to a valuable system to produce secondary metabolites. This chapter reviews its discovery, biology, controversies over its nomenclature, and some of the multiple applications developed using A. rhizogenes as a platform.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: News
    植物的第一个合成“基因驱动”可以帮助驯服杂草或转化它们。
    First synthetic \"gene drive\" for plants could help tame weeds-or transform them.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    普鲁兰梭菌是一种普遍存在的多晶型黑色酵母,具有工业和农业应用。它最近因其非常规的增殖模式而受到细胞生物学家的关注,其中多核酵母细胞在单个细胞周期内产生多个芽。这里,我们将化学转化方法与基因组靶向同源重组相结合,在短短3天内产生~60个转化体/μgDNA。这个协议很简单,便宜,并且不需要专门的设备。我们还描述了具有用于A.pullulans的密码子优化的绿色和红色荧光蛋白的载体,并使用这些工具探索新的细胞生物学。表达胞质和核标记的菌株的定量成像显示,尽管相似体积的细胞之间的核数差异很大,总的核体积规模与细胞体积在一个令人印象深刻的70倍大小范围。此处描述的协议和工具扩展了A.pullulans生物学家的工具包,并将帮助研究人员解决这种多极耐受性和形态可塑性生物带来的许多其他难题。
    Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    数十年来,贝克酵母酿酒酵母已被广泛用于了解线粒体生物学。该模型提供了有关基本知识,真核生物中保守的线粒体途径,和真菌或酵母特异性途径。酿酒酵母的许多能力之一是操纵线粒体基因组的能力,到目前为止,只有在酿酒酵母和单细胞藻类衣藻中才能实现。酵母线粒体的生物射弹转化使我们能够引入定点突变,进行基因重排,并介绍记者。这些方法主要用于了解线粒体中两个高度协调过程的机制:线粒体翻译以及呼吸复合物和ATP合酶的组装。然而,线粒体转化可用于研究其他途径。在目前的工作中,我们展示了如何通过高速微粒轰击转化酵母线粒体,选择并纯化预期的转化体,并在线粒体基因组中引入所需的突变。
    Baker´s yeast Saccharomyces cerevisiae has been widely used to understand mitochondrial biology for decades. This model has provided knowledge about essential, conserved mitochondrial pathways among eukaryotes, and fungi or yeast-specific pathways. One of the many abilities of S. cerevisiae is the capacity to manipulate the mitochondrial genome, which so far is only possible in S. cerevisiae and the unicellular algae Chlamydomonas reinhardtii. The biolistic transformation of yeast mitochondria allows us to introduce site-directed mutations, make gene rearrangements, and introduce reporters. These approaches are mainly used to understand the mechanisms of two highly coordinated processes in mitochondria: translation by mitoribosomes and assembly of respiratory complexes and ATP synthase. However, mitochondrial transformation can potentially be used to study other pathways. In the present work, we show how to transform yeast mitochondria by high-velocity microprojectile bombardment, select and purify the intended transformant, and introduce the desired mutation in the mitochondrial genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结论:我们开发并优化了一种快速,用于大麻幼苗的多功能农杆菌介导的瞬时表达系统,可用于大麻型和药物型大麻的功能基因组学研究。大麻(CannabissativaL.)由于其多样化的化学成分,在医疗和食品工业中具有广阔的前景,包括专门的大麻素。然而,研究涉及各种生物过程的关键基因,包括次级代谢产物的生物合成,由于缺乏有效的体内功能分析方法而受到阻碍。这里,我们提出了一部小说,短周期,利用根癌农杆菌高效转化大麻幼苗的方法。我们使用RUBY报告系统来监测转化结果,而不需要化学处理或专用设备。对4株根癌农杆菌(GV3101、EHA105、LBA4404和AGL1)的转化效率进行了评价,LBA4404和AGL1表现出卓越的性能。通过用GFP和GUS报告基因的成功转化进一步证明了系统的多功能性。此外,研究了注射器渗透作为真空渗透的替代方法,为高通量应用提供简单性和效率。我们的方法可以快速有效地在体内转化大麻幼苗,促进大规模蛋白质表达和高通量表征研究。
    CONCLUSIONS: We have developed and optimized a rapid, versatile Agrobacterium-mediated transient expression system for cannabis seedlings that can be used in functional genomics studies of both hemp-type and drug-type cannabis. Cannabis (Cannabis sativa L.) holds great promise in the medical and food industries due to its diverse chemical composition, including specialized cannabinoids. However, the study of key genes involved in various biological processes, including secondary metabolite biosynthesis, has been hampered by the lack of efficient in vivo functional analysis methods. Here, we present a novel, short-cycle, high-efficiency transformation method for cannabis seedlings using Agrobacterium tumefaciens. We used the RUBY reporter system to monitor transformation results without the need for chemical treatments or specialized equipment. Four strains of A. tumefaciens (GV3101, EHA105, LBA4404, and AGL1) were evaluated for transformation efficiency, with LBA4404 and AGL1 showing superior performance. The versatility of the system was further demonstrated by successful transformation with GFP and GUS reporter genes. In addition, syringe infiltration was explored as an alternative to vacuum infiltration, offering simplicity and efficiency for high-throughput applications. Our method allows rapid and efficient in vivo transformation of cannabis seedlings, facilitating large-scale protein expression and high-throughput characterization studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号