Transformation, Genetic

转型,遗传
  • 文章类型: Journal Article
    基因打靶(GT)允许精确操作基因组序列,如敲入和序列替换,但是种子植物中的GT仍然是一项具有挑战性的任务。已知工程化的序列特异性核酸酶(SSN)在生物体中通过同源定向修复(HDR)促进GT。这里,我们证明了Cas12a和耐温Cas12a变体(ttCas12a)可以通过顺序转化策略在拟南芥(拟南芥)的两个基因座上有效地建立精确和可遗传的GT。因此,ttCas12a显示出比未修饰的Cas12a更高的GT效率。此外,还研究了通过顺序转化策略对GT的转录和翻译增强子的效率。这些增强剂及其组合有望在顺序转化策略中显示GT效率的增加,类似于以前的一体化战略报告,但只观察到最大两倍的增加。这些结果表明,靶位点的双链断裂(DSB)频率是决定植物中GT遗传效率的最重要因素之一。另一方面,更高的DSB频率并不总是导致更高的GT效率,这表明GT通过HDR需要一些额外的因素。因此,不再期望DSB的增加能提高GT效率,未来需要建立新的战略。这项研究为植物中精确和可遗传的GT技术开辟了广泛的应用。
    Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    普鲁兰梭菌是一种普遍存在的多晶型黑色酵母,具有工业和农业应用。它最近因其非常规的增殖模式而受到细胞生物学家的关注,其中多核酵母细胞在单个细胞周期内产生多个芽。这里,我们将化学转化方法与基因组靶向同源重组相结合,在短短3天内产生~60个转化体/μgDNA。这个协议很简单,便宜,并且不需要专门的设备。我们还描述了具有用于A.pullulans的密码子优化的绿色和红色荧光蛋白的载体,并使用这些工具探索新的细胞生物学。表达胞质和核标记的菌株的定量成像显示,尽管相似体积的细胞之间的核数差异很大,总的核体积规模与细胞体积在一个令人印象深刻的70倍大小范围。此处描述的协议和工具扩展了A.pullulans生物学家的工具包,并将帮助研究人员解决这种多极耐受性和形态可塑性生物带来的许多其他难题。
    Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    向日葵是世界四大油料作物之一。\'Zaaidatou\'(ZADT),中国西北地区油葵的主要品种,增长周期短,高产,和对非生物胁迫的高抗性。然而,容忍攻击的能力是有限的。因此,在这项研究中,我们以骨干亲本ZADT的保留系为材料,建立了其组织培养和遗传转化体系,用于新品种的培育,以通过分子育种提高抗性和产量。MS中0.05mg/LIAA和2mg/LKT的组合更适合直接诱导具有子叶节的不定芽,MS中添加0.9mg/LIBA用于不定生根。在此基础上,通过卡那霉素的筛选和转化条件的优化,建立了一种高效的根癌农杆菌介导的ZADT遗传转化体系。幼苗阳性率达8.0%,通过聚合酶链反应(PCR)确定,在45mg/L卡那霉素条件下,细菌密度为OD6000.8,感染时间为30分钟,共培养三天。这些高效的再生和遗传转化平台对于加速向日葵的分子育种过程非常有用。
    Sunflower is one of the four major oil crops in the world. \'Zaoaidatou\' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    毛状根诱导系统用于有效地研究植物根中的基因表达和功能。黄瓜是世界范围内重要的蔬菜作物,有浅根,很少的侧根,和脆弱的根系,导致养分吸收和利用效率低。鉴定与根系发育和养分吸收相关的必需基因是促进黄瓜生长发育的有效途径。然而,尚未探索黄瓜根系发育的遗传机制。这里,我们报道了一部小说,快速,有效的毛状根转化系统。与体外子叶转化方法相比,这种方法将获得转基因根所需的时间缩短了13天。此外,我们将这种根转化方法与CRISPR/Cas9技术相结合,并通过探索与根发育和养分吸收相关的关键基因CsMYB36的表达和功能来验证我们的系统。本研究建立的毛状根转化体系为快速鉴定与黄瓜和其他园艺作物根系发育相关的必需基因提供了有力的方法。这一进展有望加快根系生物学和分子育种策略的研究,有助于更广泛的理解和改善作物的生长发育。
    The hairy root induction system was used to efficiently investigate gene expression and function in plant root. Cucumber is a significant vegetable crop worldwide, with shallow roots, few lateral roots, and weak root systems, resulting in low nutrient absorption and utilization efficiency. Identifying essential genes related to root development and nutrient absorption is an effective way to improve the growth and development of cucumbers. However, genetic mechanisms underlying cucumber root development have not been explored. Here, we report a novel, rapid, effective hairy root transformation system. Compared to the in vitro cotyledon transformation method, this method shortened the time needed to obtain transgenic roots by 13 days. Furthermore, we combined this root transformation method with CRISPR/Cas9 technology and validated our system by exploring the expression and function of CsMYB36, a pivotal gene associated with root development and nutrient uptake. The hairy root transformation system established in this study provides a powerful method for rapidly identifying essential genes related to root development in cucumber and other horticultural crop species. This advancement holds promise for expediting research on root biology and molecular breeding strategies, contributing to the broader understanding and improvements crop growth and development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大多数豆科植物都能够与变形杆菌一起发展根瘤共生,统称为根瘤菌。其中,热带物种Aeschynomeneevenia具有显着的特性,即在没有Nod因子(NodF)干预的情况下被光合根瘤菌结瘤。因此,A.evenia已成为研究与NodF无关的共生关系的工作模型。尽管有许多资源和工具来研究这种非典型共生的分子基础,缺乏基于根癌农杆菌的转化系统极大地限制了功能方法的范围。在这份报告中,我们提出了一种稳定的A.evenia遗传转化程序的开发。我们首先评估了它的再生能力,发现两种生长调节剂的组合,NAA(=萘乙酸)和BAP(=6-苄基氨基嘌呤)允许从上胚轴诱导出芽的愈伤组织,下胚轴和子叶在含有0.5μMNAA的培养基中具有高效率(高达100%的愈伤组织具有连续的茎增殖)。为了优化转基因品系的生成,我们使用了带有携带潮霉素抗性基因和mCherry荧光标记的二元载体的根癌农杆菌菌株EHA105。外胚轴和下胚轴用作该方法的起始材料。我们已经发现,一种含有NAA(0.5μM)和BAP(2,2μM)组合的生长培养基足以诱导callogenesis,而根癌农杆菌菌株EHA105具有足够的毒力,可以产生大量的转化愈伤组织。这种简单有效的方法构成了一种有价值的工具,将极大地促进NodF无关共生中的功能研究。
    Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 μM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 μM) and BAP (2,2 μM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    菌丝体是菌丝瘤的主要病因,慢性肉芽肿性感染,目前尚无适当的治疗方法。为了改善治疗,需要更多的分子水平的知识来了解M.mycetomatis是如何能够导致这种疾病。然而,M.mycetomatis的遗传工具箱是有限的。迄今为止,没有方法可以对M.mycetomatis进行遗传修饰。在本文中,原生质体介导的转化方案成功地开发了这种真菌物种,使用潮霉素作为选择标记。此外,使用这种方法,产生了表达细胞质GFP的M.mycetomatis菌株。所报道的方法对于探索M.mycetomatis的致病性和开发可用于药物发现以及遗传研究的报告菌株将是无价的。
    Madurella mycetomatis is the main cause of mycetoma, a chronic granulomatous infection for which currently no adequate therapy is available. To improve therapy, more knowledge on a molecular level is required to understand how M. mycetomatis is able to cause this disease. However, the genetic toolbox for M. mycetomatis is limited. To date, no method is available to genetically modify M. mycetomatis. In this paper, a protoplast-mediated transformation protocol was successfully developed for this fungal species, using hygromycin as a selection marker. Furthermore, using this method, a cytoplasmic-GFP-expressing M. mycetomatis strain was created. The reported methodology will be invaluable to explore the pathogenicity of M. mycetomatis and to develop reporter strains which can be useful in drug discovery as well as in genetic studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛹虫草是一种重要的食用菌,可产生多种生物活性化合物。我们先前已经建立了尿苷/尿嘧啶营养缺陷型突变体和相应的根癌农杆菌介导的转化(ATMT)系统,用于使用pyrG作为筛选标记在c中进行遗传表征。在这项研究中,我们构建了一个基于双pyrG和hisB营养缺陷型突变体的ATMT系统。使用尿苷/尿嘧啶营养缺陷型突变体作为背景,pyrG作为选择标记,编码咪唑甘油磷酸脱水酶的hisB基因,组氨酸生物合成所需的,通过同源重组敲除,构建组氨酸营养缺陷型miliaris突变体。然后,删除组氨酸营养缺陷型突变体中的pyrG以构建ΔpyrGΔhisB双重营养缺陷型突变体。Further,我们以GFP和DsRed为报告基因,建立了基于双重营养缺陷型的ATMT转化体系。最后,为了证明这种双重转化系统在基因功能研究中的应用,在双营养缺陷型C中进行了感光基因CmWC-1的敲除和互补。具有组氨酸和尿苷/尿嘧啶营养缺陷型标记的新构建的ATMT系统为药用真菌C.milaris的遗传修饰提供了有希望的工具。
    Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    遗传转化是植物基因编辑和遗传改良的重要工具。尽管许多模式植物和作物可以通过基因操作,果树的遗传转化系统要么缺乏,要么表现不佳。我们使用发根根瘤菌将目标基因转移到家蚕和猕猴桃的毛状根中。3周内产生转基因根,转基因效率为78.8%。在11周内实现了转基因毛状根的根到芽的转化,再生效率为3.3%。最后,参与干细胞活性的调控基因被用来提高芽再生效率。MdWOX5表现出最显著的效果,因为它导致20.6%的再生效率提高和9周的再生时间减少。在3周内观察到RUBY系统介导的红根过表达和MdRGF5介导的较长根毛过表达的表型,表明该方法可用于快速筛选通过根表现影响根表型得分的基因,例如根颜色,根毛,和侧根。获得RUBY系统和MdRGF5过表达系的整株植物突出了该技术用于研究整株植物中的基因功能的便利性。总的来说,我们开发了一种优化的方法来提高转化子在果树中的转化效率和稳定性。
    Genetic transformation is a critical tool for gene editing and genetic improvement of plants. Although many model plants and crops can be genetically manipulated, genetic transformation systems for fruit trees are either lacking or perform poorly. We used Rhizobium rhizogenes to transfer the target gene into the hairy roots of Malus domestica and Actinidia chinensis. Transgenic roots were generated within 3 weeks, with a transgenic efficiency of 78.8%. Root to shoot conversion of transgenic hairy roots was achieved within 11 weeks, with a regeneration efficiency of 3.3%. Finally, the regulatory genes involved in stem cell activity were used to improve shoot regeneration efficiency. MdWOX5 exhibited the most significant effects, as it led to an improved regeneration efficiency of 20.6% and a reduced regeneration time of 9 weeks. Phenotypes of the overexpression of RUBY system mediated red roots and overexpression of MdRGF5 mediated longer root hairs were observed within 3 weeks, suggesting that the method can be used to quickly screen genes that influence root phenotype scores through root performance, such as root colour, root hair, and lateral root. Obtaining whole plants of the RUBY system and MdRGF5 overexpression lines highlights the convenience of this technology for studying gene functions in whole plants. Overall, we developed an optimized method to improve the transformation efficiency and stability of transformants in fruit trees.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多汁植物,因其耐旱性和观赏性而受到重视,在花卉市场中很重要。然而,只有少数多汁的物种可以被基因转化,很难通过基因工程来改良这些植物。在这项研究中,我们采用了最近开发的切割浸芽(CDB)基因传递系统,以转化三个以前顽固的多汁植物品种-双子叶植物的Kalanchoeblossfeldiana和Crassulaarborescens和单子叶植物的三色叶草。利用切叶再生芽的强大能力,通过用发根农杆菌菌株K599直接感染切叶部分,成功转化了这些植物。转化效率约为74%,5%和3.9%-7.8%,分别,适用于布洛斯费尔戴安娜和树枝状芽孢杆菌。使用这种改良的CDB方法递送CRISPR/Cas9构建体,K.blossfeldiana在PDS基因座的基因编辑效率约为70%。我们的发现表明,可以使用CDB方法对具有切叶再生能力的多肉植物进行遗传转化,从而为这些植物的基因工程开辟了一条途径。
    Succulents, valued for their drought tolerance and ornamental appeal, are important in the floriculture market. However, only a handful of succulent species can be genetically transformed, making it difficult to improve these plants through genetic engineering. In this study, we adapted the recently developed cut-dip-budding (CDB) gene delivery system to transform three previously recalcitrant succulent varieties - the dicotyledonous Kalanchoe blossfeldiana and Crassula arborescens and the monocotyledonous Sansevieria trifasciata. Capitalizing on the robust ability of cut leaves to regenerate shoots, these plants were successfully transformed by directly infecting cut leaf segments with the Agrobacterium rhizogenes strain K599. The transformation efficiencies were approximately 74%, 5% and 3.9%-7.8%, respectively, for K. blossfeldiana and C. arborescens and S. trifasciata. Using this modified CDB method to deliver the CRISPR/Cas9 construct, gene editing efficiency in K. blossfeldiana at the PDS locus was approximately 70%. Our findings suggest that succulents with shoot regeneration ability from cut leaves can be genetically transformed using the CDB method, thus opening up an avenue for genetic engineering of these plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号