Transformation, Genetic

转型,遗传
  • 文章类型: Journal Article
    背景:菌核病菌是一种高度破坏性的植物病原真菌,对多种作物构成重大威胁。当前遗传操作技术的局限性阻碍了对其致病机制的透彻理解和有效控制策略的发展。
    结果:这里,提出了一种高效的菌核病菌遗传转化体系,利用梭形纳米粒子的使用,用FeCl3和2,6-二氨基嘧啶(DAP)合成。这些纳米粒子,平均经度长度为59.00nm,表面带正电荷,促进外源DNA直接递送到菌丝体细胞中。以及与稳定表达的成功整合。值得注意的是,该系统避免了真菌原生质体制备和繁琐的回收过程,大幅简化转型过程。此外,我们成功地利用该系统产生了具有沉默的草酰乙酸乙酰水解酶编码基因Ss-oah1的菌核链球菌菌株。
    结论:我们的研究结果证明了使用纳米颗粒介导的递送作为一种快速可靠的菌核链球菌遗传修饰工具的可行性。鉴于其简单性和高效率,它有可能显著推动丝状真菌的遗传研究,为阐明致病性的复杂性和开发创新的疾病管理策略提供了新的途径。
    BACKGROUND: Sclerotinia sclerotiorum is a highly destructive phytopathogenic fungus that poses a significant threat to a wide array of crops. The current constraints in genetic manipulation techniques impede a thorough comprehension of its pathogenic mechanisms and the development of effective control strategies.
    RESULTS: Herein, we present a highly efficient genetic transformation system for S. sclerotiorum, leveraging the use of fusiform nanoparticles, which are synthesized with FeCl3 and 2,6-diaminopyrimidine (DAP). These nanoparticles, with an average longitude length of 59.00 nm and a positively charged surface, facilitate the direct delivery of exogenous DNA into the mycelial cells of S. sclerotiorum, as well as successful integration with stable expression. Notably, this system circumvents fungal protoplast preparation and tedious recovery processes, streamlining the transformation process considerably. Furthermore, we successfully employed this system to generate S. sclerotiorum strains with silenced oxaloacetate acetylhydrolase-encoding gene Ss-oah1.
    CONCLUSIONS: Our findings demonstrate the feasibility of using nanoparticle-mediated delivery as a rapid and reliable tool for genetic modification in S. sclerotiorum. Given its simplicity and high efficiency, it has the potential to significantly propel genetic research in filamentous fungi, offering new avenues for elucidating the intricacies of pathogenicity and developing innovative disease management strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结论:构建了一个稳定的农杆菌介导的转化体系,BjuLKP2过度表达,导致植物变黄。为了验证植物中的基因功能,需要稳定有效的转化系统。建立农杆菌介导的芥菜芽孢杆菌转化体系,各种因素,包括外植体类型,激素组合和浓度,感染时间和浓度,进行了优化。最终,建立了可靠的系统,和两个BjuLKP2过表达(OE)系,表现出子叶变黄,射击技巧,叶子和花蕾,以及总叶绿素含量的减少,产生了。qRT-PCR分析显示,在BjuLKP2OE品系中,五个叶绿素合成基因显着上调,一个基因下调。此外,抗氧化能力测定显示APX活性降低,CAT和SOD,而BjuLKP2OE26中的POD活性增加。此外,叶绿素荧光诱导的动力学测定表明BjuLKP2OE26的光合能力降低。GUS分析显示BjuLKP2在各种组织中的表达,包括根,下胚轴,子叶,叶脉管系统,毛状体,萼片,花瓣,长丝,花柱和柱头基部,但不是种子。扫描电子显示海绵和栅栏组织中叶绿体超微结构的变化。总的来说,这些发现表明BjuLKP2通过降低叶绿素含量和改变叶绿体结构在植物黄化中起作用。
    CONCLUSIONS: A stable Agrobacterium-mediated transformation system was constructed for B. juncea, and BjuLKP2 was overexpressed, leading to plant yellowing. A stable and efficient transformation system is necessary to verify gene functions in plants. To establish an Agrobacterium-mediated transformation system for B. juncea, various factors, including the explant types, hormone combination and concentration, infection time and concentration, were optimized. Eventually, a reliable system was established, and two BjuLKP2 overexpression (OE) lines, which displayed yellowing of cotyledons, shoot tips, leaves and flower buds, as well as a decrease in total chlorophyll content, were generated. qRT-PCR assays revealed significant upregulation of five chlorophyll synthesis genes and downregulation of one gene in the BjuLKP2 OE line. Furthermore, antioxidant capacity assays revealed reduced activities of APX, CAT and SOD, while POD activity increased in the BjuLKP2 OE26. Additionally, the kinetic determination of chlorophyll fluorescence induction suggested a decrease in the photosynthetic ability of BjuLKP2 OE26. GUS assays revealed the expression of BjuLKP2 in various tissues, including the roots, hypocotyls, cotyledons, leaf vasculature, trichomes, sepals, petals, filaments, styles and stigma bases, but not in seeds. Scanning electron revealed alterations in chloroplast ultrastructure in both the sponge and palisade tissue. Collectively, these findings indicate that BjuLKP2 plays a role in plant yellowing through a reduction in chlorophyll content and changes in chloroplasts structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    农杆菌介导的瞬时表达是一种灵活有效的基因导入植物的技术,允许快速和暂时的基因表达。拟南芥幼苗的农杆菌浸润是一种新开发的基于农杆菌的瞬时表达系统。使用该方法可以在3天内观察到靶基因的表达和相关蛋白的定位。在这一章中,我们提出了利用农杆菌真空浸润在拟南芥幼苗中瞬时转化的详细方案。该程序通过将外源DNA引入拟南芥幼苗中来实现快速和暂时的基因表达,特别是在容易接近的组织,如子叶。该协议提供了实验程序的详细描述,包括拟南芥幼苗种植,农杆菌悬浮液的制备,和随后的步骤导致共聚焦显微镜观察。通过这个协议,研究人员可以在总共8天内有效地研究拟南芥子叶的基因功能和亚细胞定位。
    Agrobacterium-mediated transient expression is a flexible and efficient technique for introducing genes into plants, allowing for rapid and temporary gene expression. Agroinfiltration of Arabidopsis seedlings is a newly developed Agrobacterium-based transient expression system. The expression of target genes and the localization of relevant proteins can be observed within 3 days using this method. In this chapter, we present the detailed protocol for transient transformation in Arabidopsis thaliana seedlings utilizing vacuum infiltration of Agrobacterium. This procedure enables rapid and temporary gene expression by introducing exogenous DNA into Arabidopsis seedlings, particularly in easily accessible tissues such as cotyledons. This protocol provides a detailed description of experimental procedures, including Arabidopsis seedlings cultivation, the preparation of Agrobacterium suspensions, and subsequent steps leading to confocal microscope observation. Through this protocol, researchers can efficiently investigate gene function and subcellular localization in Arabidopsis cotyledons within 8 days in total.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: English Abstract
    本研究旨在通过耐盐性评估甘草中尖孢镰刀菌的体内功能。吲哚乙酸(IAA)生产能力,磷酸盐溶解能力,和铁载体生产能力。利用根癌农杆菌介导的遗传转化(ATMT)技术,通过标记基因绿色荧光蛋白(GFP)的克隆和β-葡萄糖醛酸苷酶染色(GUS)的效率检测转化体的稳定性和染色效率。选择有效且稳定的转化体来保留乌拉尔草,并评估其对乌拉尔草幼苗生长的影响。结果表明,在含有7%氯化钠的马铃薯葡萄糖琼脂(PDA)培养基上,尖孢具有良好的耐盐性,但是随着PDA培养基中氯化钠含量的增加,生长速度减慢。F.尖孢具有生产吲哚乙酸的功能,而其发酵液中IAA的浓度约为3。32mg·mL~(-1)。在这项研究中,成功构建了尖孢酵母的遗传转化体系,ATMT系统高效稳定。选择一种具有高染色效率和遗传稳定性的转化体,转化子在uralensis中的恢复率为76。92%,能显著提高1月龄乌拉尔幼苗的主根长度,促进乌拉尔幼苗的生长发育。本研究结果可为生物菌肥的开发和优质乌拉尔的生长调控奠定基础。
    This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of β-glucuronidase staining(GUS). Efficient and stable transformants were selected for restaining G. uralensis and evaluating its influence on the growth of the G. uralensis seedlings. The results show that F. oxysporum has good salt tolerance and could still grow on potato glucose agar(PDA) medium containing 7% sodium chloride, but the growth rate slows down with the increase in sodium chloride content in PDA medium. F. oxysporum has the function of producing indoleacetic acid, and the concentration of IAA in its fermentation broth is about 3. 32 mg · m L~(-1). In this study, the genetic transformation system of F. oxysporum is successfully constructed, and the ATMT system is efficient and stable. One transformant with both high staining efficiency and genetic stability is selected, and the restaining rate of the transformant in G. uralensis is 76. 92%, which could significantly improve the main root length of one-month-old G. uralensis seedlings and promote the growth and development of G. uralensis seedlings. The results of this study can lay the foundation for the development of biological bacterial fertilizer and the growth regulation of high-quality G. uralensis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因打靶(GT)允许精确操作基因组序列,如敲入和序列替换,但是种子植物中的GT仍然是一项具有挑战性的任务。已知工程化的序列特异性核酸酶(SSN)在生物体中通过同源定向修复(HDR)促进GT。这里,我们证明了Cas12a和耐温Cas12a变体(ttCas12a)可以通过顺序转化策略在拟南芥(拟南芥)的两个基因座上有效地建立精确和可遗传的GT。因此,ttCas12a显示出比未修饰的Cas12a更高的GT效率。此外,还研究了通过顺序转化策略对GT的转录和翻译增强子的效率。这些增强剂及其组合有望在顺序转化策略中显示GT效率的增加,类似于以前的一体化战略报告,但只观察到最大两倍的增加。这些结果表明,靶位点的双链断裂(DSB)频率是决定植物中GT遗传效率的最重要因素之一。另一方面,更高的DSB频率并不总是导致更高的GT效率,这表明GT通过HDR需要一些额外的因素。因此,不再期望DSB的增加能提高GT效率,未来需要建立新的战略。这项研究为植物中精确和可遗传的GT技术开辟了广泛的应用。
    Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黑曲霉是工业化生产酶和有机酸的著名主力。这种真菌也会导致水果采后疾病。尽管基于抗生素抗性标记的根癌农杆菌介导的转化(ATMT)已被有效地用于检测野生型真菌中靶基因的功能,尼日尔的情况仍需进一步改善。在本研究中,我们使用潮霉素抗性标记重新检查了野生型A.niger菌株中的ATMT,并引入了noursethricin抗性基因作为该真菌的新选择标记。出乎意料的是,我们的结果表明,使用黑曲霉抗性标记的ATMT方法在转化板上导致许多小菌落作为假阳性转化体。使用顶级琼脂覆盖技术来限制假阳性菌群,106个分生孢子的转化效率为87±18个真正的转化体。有两个不同的选择标记,我们可以在单个野生型A.niger菌株中进行靶基因的缺失和互补。我们的结果还表明,天鹅绒复合物的两个关键调节基因(laeA和veA)是黑曲霉感染苹果果实所必需的。值得注意的是,我们首次证明了柑橘采后病原体黄霉菌的laeA同源基因能够恢复黑曲霉ΔlaeA突变体的酸化能力和致病性。来自我们工作的双抗性标记ATMT系统代表了用于黑曲霉基因功能表征的改进的遗传工具。
    Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非生物环境胁迫会对植物造成各种类型的损害,并导致产量的重大损失。植物中的非生物胁迫耐受性是指抵抗环境因素和维持生长的能力,发展,和生产。由于这种耐受性是由一个基因或一组基因控制的,这些基因在植物中的转基因激活通常会增强非生物胁迫下的耐受性。因此,本方法学章节描述了非生物应激源诱导基因所需的策略和相应的方案,将相应的cDNA克隆到质粒和农杆菌细胞中,并使用花浸方法对拟南芥植物进行遗传转化。本章还描述了评估转基因对植物耐受性影响的标准试验。最后,本章中概述的用于克隆和产生耐受非生物胁迫的转基因植物的技术是一种通用的方法,可以在各种植物物种和基因中实施。
    Abiotic environmental stressors cause various types of damage to plants and cause significant loss in yield. Abiotic stress tolerance in plants refers to the ability to withstand environmental factors and maintain growth, development, and production. Since this tolerance is controlled by a gene or a set of genes, transgenic activating of these genes in plants often enhances tolerance under abiotic stress. Therefore, this methodology chapter describes a strategy and the corresponding protocols needed to induce a gene by an abiotic stressor, clone the corresponding cDNA into plasmids and Agrobacterium cells, and genetic transformation to the Arabidopsis plants using the floral dip method. The chapter also describes standard assays to evaluate the transgene\'s effect on the plant\'s tolerance. Finally, the techniques outlined in this chapter for cloning and generating transgenic plants tolerant to abiotic stress are a versatile approach that can be implemented across various plant species and genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本章提出了一种有效的方案,用于通过从经济上重要的木瓜基因型的未成熟合子胚中通过体细胞胚发生再生番木瓜植物。为了从体细胞胚获得再生植物,在本协议中,需要四个感应周期,随后是一个增殖周期和一个再生周期。有了这个优化的协议,80%的体细胞胚可以在3.5个月内获得。在这个阶段,含有50%以上球状结构的愈伤组织可用于转化(通过农杆菌,生物物理学,或任何其他转换方法)。一旦转化,愈伤组织可以转移到以下步骤(乘法,伸长率,成熟,生根,和体外适应)以再生转化的体细胞胚来源的完整植物。
    This chapter presents an efficient protocol for regenerating Carica papaya plants via somatic embryogenesis from immature zygotic embryos from economically important papaya genotypes. To achieve regenerated plants from somatic embryos, in the present protocol, four induction cycles are required, followed by one multiplication cycle and one regeneration cycle. With this optimized protocol, 80% of somatic embryos can be obtained in only 3.5 months. At this stage, calli containing more than 50% globular structures can be used for transformation (via agrobacterium, biobalistics, or any other transformation method). Once transformed, calli can be transferred to the following steps (multiplication, elongation, maturation, rooting, and ex vitro acclimatization) to regenerate a transformed somatic embryo-derived full plant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多年来,我们的团队致力于研究一种独特的天然染料生产物种,安纳托(比萨奥雷利亚娜L.)。我们已经积累了知识并建立了基础,支持基因表达分析在理解体外形态发生再生过程中的应用。相变方面,和Bixin生物合成。此外,我们已经进行了与这些过程相关的基因编辑。该领域的进步有望增强育种实践,并有助于这种重要的木本物种的整体改进。这里,我们提出了基于体细胞胚胎发生的分步方案和利用根癌农杆菌的优化转化方案。
    Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这一章中,我们报道了应用于西番莲的组织培养的进展。我们提出了体细胞胚胎发生的可重复方案,胚乳衍生的三倍体生产,以及我们的研究团队和合作者在过去20年中产生的这种物种知识的遗传转化。我们的研究小组开创了百香果体细胞胚胎发生的工作,我们致力于描述这种形态发生途径的几个方面。此外,我们扩展了理解与西番莲发育相变相关的分子机制的可能性。还有辛辛那塔桅杆.,并提出了过表达microRNA156的转化方案。
    In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号