Mesh : Saccharomyces cerevisiae / genetics metabolism Mitochondria / metabolism genetics Transformation, Genetic Biolistics / methods Protein Biosynthesis Genome, Mitochondrial / genetics

来  源:   DOI:10.3791/66856

Abstract:
Baker´s yeast Saccharomyces cerevisiae has been widely used to understand mitochondrial biology for decades. This model has provided knowledge about essential, conserved mitochondrial pathways among eukaryotes, and fungi or yeast-specific pathways. One of the many abilities of S. cerevisiae is the capacity to manipulate the mitochondrial genome, which so far is only possible in S. cerevisiae and the unicellular algae Chlamydomonas reinhardtii. The biolistic transformation of yeast mitochondria allows us to introduce site-directed mutations, make gene rearrangements, and introduce reporters. These approaches are mainly used to understand the mechanisms of two highly coordinated processes in mitochondria: translation by mitoribosomes and assembly of respiratory complexes and ATP synthase. However, mitochondrial transformation can potentially be used to study other pathways. In the present work, we show how to transform yeast mitochondria by high-velocity microprojectile bombardment, select and purify the intended transformant, and introduce the desired mutation in the mitochondrial genome.
摘要:
数十年来,贝克酵母酿酒酵母已被广泛用于了解线粒体生物学。该模型提供了有关基本知识,真核生物中保守的线粒体途径,和真菌或酵母特异性途径。酿酒酵母的许多能力之一是操纵线粒体基因组的能力,到目前为止,只有在酿酒酵母和单细胞藻类衣藻中才能实现。酵母线粒体的生物射弹转化使我们能够引入定点突变,进行基因重排,并介绍记者。这些方法主要用于了解线粒体中两个高度协调过程的机制:线粒体翻译以及呼吸复合物和ATP合酶的组装。然而,线粒体转化可用于研究其他途径。在目前的工作中,我们展示了如何通过高速微粒轰击转化酵母线粒体,选择并纯化预期的转化体,并在线粒体基因组中引入所需的突变。
公众号