DNA origami

DNA 折纸
  • 文章类型: Journal Article
    圆二色性(CD)光谱法已被广泛用于检测和区分不同物质和结构的手性。然而,CD光谱学本质上很弱,通常与手性传感相关,从而限制了其应用范围。这里,我们报告了一个DNA折纸授权的超表面传感平台,通过超表面和DNA折纸的协同作用,通过增强的ΔCD实现高灵敏度的非手性/轻微手性传感。一个足月超表面,拥有超过60倍的平均光学手性增强,经过精心设计,可以与可重构的DNA折纸进行协同作用。我们通过实验证明了通过所提出平台的增强的ΔCD检测非手性/轻度手性DNA接头链,与没有超表面的平台相比,其灵敏度提高了10倍。我们的工作提出了一个高灵敏度的平台,用于通过手性光谱进行非手性/轻微手性传感,扩大手性光谱学的能力,并激发多功能人造纳米结构在不同领域的整合。
    Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA纳米结构已用于研究生物机械过程并构建人造纳米系统。许多应用场景需要能够稳健地产生大的单分子力的纳米器件。然而,大多数现有的动态DNA纳米结构是由空间分离的DNA链之间的概率杂交反应触发的,仅非确定性地产生相对较小的压缩力(≈0.4皮牛顿(pN))。这里,开发了嵌入剂触发的动态DNA折纸纳米结构,其中嵌入剂和纳米结构之间的大量局部结合反应共同导致相对较大的压缩力(≈11.2pN)的强大产生。具有不同刚度的生物分子负载,3、4和6螺旋DNA束被压缩力有效地弯曲。这项工作提供了一个强大而强大的力生成工具,用于在合成纳米系统中构建高度化学机械耦合的分子机器。
    DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这篇综述讨论了基于脂质体制剂的新型混合组装体。重点在于通过脂质体/囊泡与其他纳米物体如核酸纳米结构和金属纳米颗粒的整合形成的杂合构建体。目的是介绍一些最近,桥梁不同技术的具体例子,因此可能形成先进的药物输送应用的新平台。
    我们介绍了脂质体制剂与复杂纳米结构结合的示例,这些纳米结构基于DNA折纸等生物分子或金属材料-金属/金属氧化物/磁性颗粒和金属纳米结构,例如金属有机框架-以及它们在药物输送和超越中的应用。
    合并上述技术可以导致开发具有最理想特性的药物递送载体;多功能,生物相容性,高药物装载效率/准确性/容量,和刺激反应。在不久的将来,我们认为,特别是结合动态的战略,可触发和可编程的DNA纳米结构和脂质体可用于创建用于多种应用的人工脂质体簇,例如检查脂质双层之间的蛋白质介导的相互作用和脂质体之间的通道材料,以增强药物递送中的药代动力学特性。
    UNASSIGNED: This review discusses novel hybrid assemblies that are based on liposomal formulations. The focus is on the hybrid constructs that are formed through the integration of liposomes/vesicles with other nano-objects such as nucleic acid nanostructures and metallic nanoparticles. The aim is to introduce some of the recent, specific examples that bridge different technologies and thus may form a new platform for advanced drug delivery applications.
    UNASSIGNED: We present selected examples of liposomal formulations combined with complex nanostructures either based on biomolecules like DNA origami or on metallic materials - metal/metal oxide/magnetic particles and metallic nanostructures, such as metal organic frameworks - together with their applications in drug delivery and beyond.
    UNASSIGNED: Merging the above-mentioned techniques could lead to development of drug delivery vehicles with the most desirable properties; multifunctionality, biocompatibility, high drug loading efficiency/accuracy/capacity, and stimuli-responsiveness. In the near future, we believe that especially the strategies combining dynamic, triggerable and programmable DNA nanostructures and liposomes could be used to create artificial liposome clusters for multiple applications such as examining protein-mediated interactions between lipid bilayers and channeling materials between liposomes for enhanced pharmacokinetic properties in drug delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在特定器官或细胞中起作用的纳米装置是合成生物学的最终目标之一。DNA纳米技术的最新进展,如DNA折纸,使我们能够构建纳米设备来递送有效载荷(例如,药物)对肿瘤。然而,由于DNA纳米结构的脆性和DNA纳米结构的低靶向能力,递送至特定器官仍然困难。这里,我们构建了艰难的DNA折纸,使我们能够在苛刻的条件(低pH)下将DNA折纸封装到基于脂质的纳米颗粒(LNP)中,利用目的基因(GOI)的器官特异性递送。我们发现,DNA折纸封装的LNP可以通过低温电子显微镜(Cryo-EM)揭示的不同LNP结构的贡献来增加小鼠器官内有效负载GOI(mRNA和siRNA)的功能。这些数据应该是未来使用DNA折纸纳米设备进行器官特异性基因表达控制的基础。
    Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于RNA的疗法已成为治疗各种疾病的有希望的方法,包括癌症,遗传性疾病,和传染病。然而,由于RNA分子易于降解和细胞摄取效率低下,因此将RNA分子递送到靶细胞中一直是主要挑战。为了克服这些障碍,基于DNA的纳米技术作为RNA疗法的潜在递送平台提供了前所未有的机会。由于其优异的特性,如可编程性和生物相容性,这些基于DNA的纳米结构,由组装成精确可编程结构的DNA分子组成,作为保护RNA有效载荷并将其递送到所需细胞目的地的理想建筑材料,已经引起了极大的关注。在这次审查中,我们重点介绍了三种基于DNA的纳米结构的设计和应用的当前进展:DNA折纸,与框架引导组装(FGA)相关的脂质纳米颗粒(LNP)技术,和用于递送RNA分子的DNA水凝胶。简要讨论了它们的生物医学应用,并强调了该领域的挑战和未来前景。
    RNA-based therapeutics have emerged as a promising approach for the treatment of various diseases, including cancer, genetic disorders, and infectious diseases. However, the delivery of RNA molecules into target cells has been a major challenge due to their susceptibility to degradation and inefficient cellular uptake. To overcome these hurdles, DNA-based nano technology offers an unprecedented opportunity as a potential delivery platform for RNA therapeutics. Due to its excellent characteristics such as programmability and biocompatibility, these DNA-based nanostructures, composed of DNA molecules assembled into precise and programmable structures, have garnered significant attention as ideal building materials for protecting and delivering RNA payloads to the desired cellular destinations. In this review, we highlight the current progress in the design and application of three DNA-based nanostructures: DNA origami, lipid-nanoparticle (LNP) technology related to frame guided assembly (FGA), and DNA hydrogel for the delivery of RNA molecules. Their biomedical applications are briefly discussed and the challenges and future perspectives in this field are also highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    六方氮化硼(hBN)中的光发射器是用于单分子传感平台的有前途的探针。当设计成纳米粒子时,它们可以作为探测器集成在纳米设备中,然而,在纳米级的位置控制是缺乏。在这里,我们展示了具有纳米精度的光学活性hBN纳米颗粒(NP)的DNA折纸纳米孔的功能化。NP在三个可见光波长下是活跃的,并显示稳定和闪烁的发射,通过使用广域光学纳米显微镜使其精确定位。相关的光学结构表征揭示了明亮的确定性结合,由于DNA折纸上特定位点的π-π堆叠相互作用,孔缘处多色hBNNP。我们的工作提供了一个可扩展的,基于DNA折纸的固态发射器在任意结构元素上的确定性组装的自下而上的方法。光学活性成分的这种纳米级排列可以促进单分子平台的发展,包括光学纳米孔和纳米通道传感器。
    Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化学有能力赋予超分子纳米结构新的生物医学相关功能。这里报道了用胆固醇标签修饰的DNA纳米结构破坏细菌膜导致微生物细胞死亡。与富含胆固醇的细菌膜相比,脂化的DNA纳米结构更容易与无胆固醇的细菌膜结合。真核细胞膜。这些带高度负电荷的,脂化的DNA纳米结构通过破裂膜导致细菌细胞死亡。引人注目的是,杀死是由粘附在膜上的桶状纳米结构簇介导的,而没有预期的双层穿刺桶的参与。这些DNA纳米材料可能会激发聚合物或小分子抗菌剂的发展,这些抗菌剂模仿选择性结合和破裂的原理,以帮助对抗抗微生物耐药性。
    Chemistry has the power to endow supramolecular nanostructures with new biomedically relevant functions. Here it is reported that DNA nanostructures modified with cholesterol tags disrupt bacterial membranes to cause microbial cell death. The lipidated DNA nanostructures bind more readily to cholesterol-free bacterial membranes than to cholesterol-rich, eukaryotic membranes. These highly negatively charged, lipidated DNA nanostructures cause bacterial cell death by rupturing membranes. Strikingly, killing is mediated by clusters of barrel-shaped nanostructures that adhere to the membrane without the involvement of expected bilayer-puncturing barrels. These DNA nanomaterials may inspire the development of polymeric or small-molecule antibacterial agents that mimic the principles of selective binding and rupturing to help combat antimicrobial resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞色素C,一种进化上保守的蛋白质,在细胞呼吸和凋亡中起着关键作用。了解其分子复杂性对于学术探究和潜在的生物医学应用至关重要。本研究介绍了一种基于DNA折纸纳米天线(DONA)的先进的单分子表面增强拉曼散射(SM-SERS)系统,优化以提供对蛋白质结构和相互作用的无与伦比的见解。我们的系统有效地检测酰胺III波段的变化,从而阐明蛋白质动力学和构象变化。此外,该系统允许同时观察氧化过程和酰胺带,提供蛋白质结构和化学修饰的综合视图。值得注意的是,我们的方法不同于传统的SM-SERS技术,不再强调SERS激发的共振条件,旨在缓解峰值过饱和等挑战。我们的发现强调了DONA阐明单分子行为的能力,即使在聚合系统中,提供分子相互作用和行为的清晰度。
    Cytochrome C, an evolutionarily conserved protein, plays pivotal roles in cellular respiration and apoptosis. Understanding its molecular intricacies is essential for both academic inquiry and potential biomedical applications. This study introduces an advanced single-molecule surface-enhanced Raman scattering (SM-SERS) system based on DNA origami nanoantennas (DONAs), optimized to provide unparalleled insights into protein structure and interactions. Our system effectively detects shifts in the Amide III band, thereby elucidating protein dynamics and conformational changes. Additionally, the system permits concurrent observations of oxidation processes and Amide bands, offering an integrated view of protein structural and chemical modifications. Notably, our approach diverges from traditional SM-SERS techniques by de-emphasizing resonance conditions for SERS excitation, aiming to mitigate challenges like peak oversaturation. Our findings underscore the capability of our DONAs to illuminate single-molecule behaviors, even within aggregate systems, providing clarity on molecular interactions and behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属等离子体纳米结构具有等离子体共振的光学性质,这在纳米光子学中具有巨大的发展潜力,生物电子学,和分子检测。然而,开发一种通用和直接的方法来制备具有可控尺寸和形态的金属等离子体纳米结构仍然是一个挑战。在这里,我们提出了一种合成策略,该策略利用可定制的自组装模板进行金属结构的形状定向生长。我们使用金纳米粒子(AuNP)作为连接器和DNA纳米管作为分支,通过调整连接器和分支之间的组装比例来定制具有不同分支的金纳米颗粒-DNA折纸复合纳米结构。随后,使用这种模板形状引导策略创建了等离子体金属纳米结构的各种形态,表现出表面增强拉曼散射(SERS)信号的增强。这种策略为合成具有多种形态的金属纳米结构提供了一种新方法,并为开发具有更广泛应用的可定制金属等离子体结构开辟了另一种可能性。
    The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    急性肺损伤(ALI)是一种严重的炎症性肺部疾病,死亡率高。活性氧(ROS)清除剂的早期干预可以减少ROS的积累,打破肺泡巨噬细胞(AMs)的炎症扩展链,并避免对肺泡上皮细胞和内皮细胞的不可逆损伤。这里,我们报道了细胞穿透性R9肽修饰的三角形DNA折纸纳米结构(tDONs-R9)作为一种新型可雾化药物,可以到达肺泡深部区域,并表现出对巨噬细胞的摄取偏好增强.tDONs-R9抑制促炎细胞因子的表达,并在巨噬细胞中驱动向抗炎M2表型的极化。在LPS诱导的ALI小鼠模型中,雾化TDONS-R9治疗缓解了压倒性的ROS,促炎细胞因子,肺部有嗜中性粒细胞浸润.我们的研究表明,tDONs-R9具有治疗ALI的潜力,可编程的DNA折纸纳米结构为肺部疾病治疗提供了新的药物递送平台,具有高的递送效率和生物安全性。
    Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号