DNA origami

DNA 折纸
  • 文章类型: Journal Article
    带有靶向配体的等离子体纳米材料对于基于表面增强拉曼散射(SERS)的生物成像应用非常感兴趣。然而,基于SERS的成像策略的实用性受到缺乏以高产率和高效率合成高灵敏度SERS活性纳米结构的直接方法的阻碍。在这项工作中,利用DNA折纸原理,我们报道了用于靶向癌症成像(SPECTRA)的基于SERS的等离子体耦合纳米探针的一流设计.纳米探针利用靶向癌细胞的DNA适体序列和振动标签,在细胞沉默的拉曼窗口中具有拉伸频率。通过整合DU145细胞特异性的适体序列,我们展示了SPECTRA对DU145细胞靶向成像的独特功能.我们的结果表明,可扩展性,成本效益,这种制造SERS纳米探针的方法的可重复性和可重复性可以作为创建在癌症生物学和生物医学成像领域具有广泛应用的纳米探针的通用平台。
    Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过利用基于DNA折纸的等离子天线,提出了通过表面增强拉曼散射(SERS)检测单酶催化反应的方法。将单个辣根过氧化物酶(HRP)容纳在含有金纳米颗粒的DNA折纸纳米叉等离子体天线(DONA)上,能够在过氧化物还原反应过程中跟踪单分子SERS信号。这允许在合适的液体条件下监测单个酶催化中心和产物的结构。在这里,我们证明了HRP的化学变化和四甲基联苯胺(TMB)的出现,在催化反应之前和之后作为氢供体。结果表明,HRP中的铁采用Fe4和低自旋态,并引入H2O2,表明化合物I的形成。进行密度泛函理论(DFT)计算用于后面的催化步骤,以使实验拉曼/SERS光谱合理化。所提供的数据提供了在化学反应期间原位跟踪单个生物分子并进一步开发等离子体激元增强的生物催化的几种可能性。
    The detection of a single-enzyme catalytic reaction by surfaced-enhanced Raman scattering (SERS) is presented by utilizing DNA origami-based plasmonic antennas. A single horseradish peroxidase (HRP) was accommodated on a DNA origami nanofork plasmonic antenna (DONA) containing gold nanoparticles, enabling the tracing of single-molecule SERS signals during the peroxide reduction reaction. This allows monitoring of the structure of a single enzymatic catalytic center and products under suitable liquid conditions. Herein, we demonstrate the chemical changes of HRP and the appearance of tetramethylbenzidine (TMB), which works as a hydrogen donor before and after the catalytic reaction. The results show that the iron in HRP adopts Fe4+ and low spin states with the introduction of H2O2, indicating compound-I formation. Density functional theory (DFT) calculations were performed for later catalytic steps to rationalize the experimental Raman/SERS spectra. The presented data provide several possibilities for tracking single biomolecules in situ during a chemical reaction and further developing plasmon-enhanced biocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金黄色葡萄球菌(SA)对人类和动物健康构成严重威胁,需要低成本和高性能的分析平台来进行即时诊断。纤维素纸基场效应晶体管(FET)与RNA裂解DNAzymes(RCD)可以满足低成本的要求,然而,其高亲水性和亲脂性阻碍了生化修饰,导致灵敏度低,机械稳定性差,污垢性能差。在这里,我们提出了一种可控的自清洁FET,以简化生化改性,提高机械稳定性和防污性能。然后,我们构建了基于RCD的DNA纳米树以显著提高SA检测的灵敏度.对于可控自清洁FET,1H,1H,2H,合成了基于2H-全氟癸基三甲氧基硅烷的聚合物纳米颗粒,用于装饰纤维素纸和全碳纳米薄膜线。O2等离子体用于调节以降低氟碳链密度,然后控制敏感区域的疏水-疏油性能。因为带负电荷的DNA会影响半导体FET的灵敏度,设计了三个低成本的Y形分支,并应用于基于相似的DNA折纸技术合成了基于RCD的DNA纳米树,进一步提高了灵敏度。DNA-纳米树干由RCD组成,顶篷是使用多个Y形分支自组装的。可控自清洁FET生物传感器用于SA检测,无需培养,线性范围为1~105CFU/mL,可检出低值1CFU/mL。
    Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在特定器官或细胞中起作用的纳米装置是合成生物学的最终目标之一。DNA纳米技术的最新进展,如DNA折纸,使我们能够构建纳米设备来递送有效载荷(例如,药物)对肿瘤。然而,由于DNA纳米结构的脆性和DNA纳米结构的低靶向能力,递送至特定器官仍然困难。这里,我们构建了艰难的DNA折纸,使我们能够在苛刻的条件(低pH)下将DNA折纸封装到基于脂质的纳米颗粒(LNP)中,利用目的基因(GOI)的器官特异性递送。我们发现,DNA折纸封装的LNP可以通过低温电子显微镜(Cryo-EM)揭示的不同LNP结构的贡献来增加小鼠器官内有效负载GOI(mRNA和siRNA)的功能。这些数据应该是未来使用DNA折纸纳米设备进行器官特异性基因表达控制的基础。
    Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于RNA的疗法已成为治疗各种疾病的有希望的方法,包括癌症,遗传性疾病,和传染病。然而,由于RNA分子易于降解和细胞摄取效率低下,因此将RNA分子递送到靶细胞中一直是主要挑战。为了克服这些障碍,基于DNA的纳米技术作为RNA疗法的潜在递送平台提供了前所未有的机会。由于其优异的特性,如可编程性和生物相容性,这些基于DNA的纳米结构,由组装成精确可编程结构的DNA分子组成,作为保护RNA有效载荷并将其递送到所需细胞目的地的理想建筑材料,已经引起了极大的关注。在这次审查中,我们重点介绍了三种基于DNA的纳米结构的设计和应用的当前进展:DNA折纸,与框架引导组装(FGA)相关的脂质纳米颗粒(LNP)技术,和用于递送RNA分子的DNA水凝胶。简要讨论了它们的生物医学应用,并强调了该领域的挑战和未来前景。
    RNA-based therapeutics have emerged as a promising approach for the treatment of various diseases, including cancer, genetic disorders, and infectious diseases. However, the delivery of RNA molecules into target cells has been a major challenge due to their susceptibility to degradation and inefficient cellular uptake. To overcome these hurdles, DNA-based nano technology offers an unprecedented opportunity as a potential delivery platform for RNA therapeutics. Due to its excellent characteristics such as programmability and biocompatibility, these DNA-based nanostructures, composed of DNA molecules assembled into precise and programmable structures, have garnered significant attention as ideal building materials for protecting and delivering RNA payloads to the desired cellular destinations. In this review, we highlight the current progress in the design and application of three DNA-based nanostructures: DNA origami, lipid-nanoparticle (LNP) technology related to frame guided assembly (FGA), and DNA hydrogel for the delivery of RNA molecules. Their biomedical applications are briefly discussed and the challenges and future perspectives in this field are also highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    六方氮化硼(hBN)中的光发射器是用于单分子传感平台的有前途的探针。当设计成纳米粒子时,它们可以作为探测器集成在纳米设备中,然而,在纳米级的位置控制是缺乏。在这里,我们展示了具有纳米精度的光学活性hBN纳米颗粒(NP)的DNA折纸纳米孔的功能化。NP在三个可见光波长下是活跃的,并显示稳定和闪烁的发射,通过使用广域光学纳米显微镜使其精确定位。相关的光学结构表征揭示了明亮的确定性结合,由于DNA折纸上特定位点的π-π堆叠相互作用,孔缘处多色hBNNP。我们的工作提供了一个可扩展的,基于DNA折纸的固态发射器在任意结构元素上的确定性组装的自下而上的方法。光学活性成分的这种纳米级排列可以促进单分子平台的发展,包括光学纳米孔和纳米通道传感器。
    Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞色素C,一种进化上保守的蛋白质,在细胞呼吸和凋亡中起着关键作用。了解其分子复杂性对于学术探究和潜在的生物医学应用至关重要。本研究介绍了一种基于DNA折纸纳米天线(DONA)的先进的单分子表面增强拉曼散射(SM-SERS)系统,优化以提供对蛋白质结构和相互作用的无与伦比的见解。我们的系统有效地检测酰胺III波段的变化,从而阐明蛋白质动力学和构象变化。此外,该系统允许同时观察氧化过程和酰胺带,提供蛋白质结构和化学修饰的综合视图。值得注意的是,我们的方法不同于传统的SM-SERS技术,不再强调SERS激发的共振条件,旨在缓解峰值过饱和等挑战。我们的发现强调了DONA阐明单分子行为的能力,即使在聚合系统中,提供分子相互作用和行为的清晰度。
    Cytochrome C, an evolutionarily conserved protein, plays pivotal roles in cellular respiration and apoptosis. Understanding its molecular intricacies is essential for both academic inquiry and potential biomedical applications. This study introduces an advanced single-molecule surface-enhanced Raman scattering (SM-SERS) system based on DNA origami nanoantennas (DONAs), optimized to provide unparalleled insights into protein structure and interactions. Our system effectively detects shifts in the Amide III band, thereby elucidating protein dynamics and conformational changes. Additionally, the system permits concurrent observations of oxidation processes and Amide bands, offering an integrated view of protein structural and chemical modifications. Notably, our approach diverges from traditional SM-SERS techniques by de-emphasizing resonance conditions for SERS excitation, aiming to mitigate challenges like peak oversaturation. Our findings underscore the capability of our DONAs to illuminate single-molecule behaviors, even within aggregate systems, providing clarity on molecular interactions and behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们展示了使用DNA折纸来创建病毒捕获纳米壳,有效地中和细胞培养中的乙型肝炎病毒(HBV)。通过与HBV包膜结合的合成单克隆抗体的外壳修饰,与使用游离抗体相比,每个抗体的有效中和效力增加约100倍。中和病毒的改进归因于两个因素:第一,壳充当物理屏障,阻止病毒与宿主细胞相互作用;第二,壳内抗体的多价结合导致对被困病毒的更强附着,一种被称为贪婪的现象。壳与HBV的预孵育和同时添加两种成分分别到细胞导致中和的可比水平,表明病毒粒子被贝壳快速捕获。我们的研究强调了DNA外壳系统合理创建抗病毒药物的潜力,当单独使用时,显示很少或没有抗病毒的有效性。
    We demonstrate the use of DNA origami to create virus-trapping nanoshells that efficiently neutralize hepatitis B virus (HBV) in cell culture. By modification of the shells with a synthetic monoclonal antibody that binds to the HBV envelope, the effective neutralization potency per antibody is increased by approximately 100 times compared to using free antibodies. The improvements in neutralizing the virus are attributed to two factors: first, the shells act as a physical barrier that blocks the virus from interacting with host cells; second, the multivalent binding of the antibodies inside the shells lead to stronger attachment to the trapped virus, a phenomenon known as avidity. Pre-incubation of shells with HBV and simultaneous addition of both components separately to cells lead to comparable levels of neutralization, indicating rapid trapping of the virions by the shells. Our study highlights the potential of the DNA shell system to rationally create antivirals using components that, when used individually, show little to no antiviral effectiveness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA纳米结构表现出多种几何形状,并具有其他纳米材料中未发现的复杂功能。它们作为可定制的纳米平台,用于协调分子组分的空间排列,如生物分子,抗体,或者合成纳米材料.这通过将寡核苷酸掺入纳米结构的设计中来实现。在向癌细胞输送药物的领域,对增强功效和选择性的主动靶向测定越来越感兴趣。主动瞄准方法涉及“钥匙锁”机制,通过它的配体,识别肿瘤细胞上的特定受体,促进药物的释放。各种DNA纳米结构,包括DNA折纸,四面体,nanoflower,十字形,nanostar,纳米倍增管,和nanoccklebur,可以穿过细胞膜的脂质层,允许货物运送到细胞核。适体,容易在体外形成,由于它们对特定靶标的高选择性和低免疫原性,它们的靶向递送能力得到认可。这篇综述全面概述了药物递送系统中适体修饰的DNA纳米结构的形成和修饰的最新进展。
    DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a \"key-lock\" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有各向异性周期性电位景观的分子装置可以作为布朗马达操作。当潜在的景观被外力循环切换时,这样的设备可以利用随机布朗波动来产生有向运动。最近,用带有设计的棘轮状障碍物的电开关DNA折纸转子证明了定向的布朗马达状旋转运动。这里,我们证明DNA折纸转子的固有各向异性也足以导致电机运动。我们表明,对于外部开关场的低振幅,这样的设备作为布朗电机运行,而在较高的振幅下,它们的行为就像过阻尼电机一样。我们表征了运动的振幅和频率依赖性,表明在最初的急剧上升之后,角速度的峰值和下降过大的驱动幅度和频率。转子运动可以通过系统的简单随机模型很好地描述。
    Molecular devices that have an anisotropic periodic potential landscape can be operated as Brownian motors. When the potential landscape is cyclically switched with an external force, such devices can harness random Brownian fluctuations to generate a directed motion. Recently, directed Brownian motor-like rotatory movement was demonstrated with an electrically switched DNA origami rotor with designed ratchet-like obstacles. Here, we demonstrate that the intrinsic anisotropy of DNA origami rotors is also sufficient to result in motor movement. We show that for low amplitudes of an external switching field, such devices operate as Brownian motors, while at higher amplitudes, they behave deterministically as overdamped electrical motors. We characterize the amplitude and frequency dependence of the movements, showing that after an initial steep rise, the angular speed peaks and drops for excessive driving amplitudes and frequencies. The rotor movement can be well described by a simple stochastic model of the system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号