DNA origami

DNA 折纸
  • 文章类型: Journal Article
    单一疗法,特别是使用针对血管内皮生长因子(VEGF)的抗体,在治疗脉络膜新生血管(CNV)方面显示出局限性,因为活性氧(ROS)也会加剧CNV的形成。在这里,我们开发了一种基于DNA折纸平台的联合疗法,该平台靶向眼部新生血管的多种成分.我们的研究表明,在小鼠模型中,玻璃体内注射通过基质金属蛋白酶(MMP)可裂解的肽接头与抗VEGF抗体(aV)缀合的VEGF适体(Ap)修饰的矩形DNA折纸片可显着抑制眼部新生血管形成。通常,由于aV和Ap的双重靶向能力,基于DNA折纸的治疗平台选择性地积累在新生血管病变中,然后通过MMP切割肽接头以释放抗体。一起,释放的抗体和Ap抑制VEGF活性。此外,剩余的裸DNA折纸可以有效清除ROS,减少CNV位点的氧化应激,从而最大限度地发挥抑制新生血管的协同作用。
    Monotherapy, especially the use of antibodies targeting vascular endothelial growth factor (VEGF), has shown limitations in treating choroidal neovascularization (CNV) since reactive oxygen species (ROS) also exacerbate CNV formation. Herein, we developed a combination therapy based on a DNA origami platform targeting multiple components of ocular neovascularization. Our study demonstrated that ocular neovascularization was markedly suppressed by intravitreal injection of a rectangular DNA origami sheet modified with VEGF aptamers (Ap) conjugated to an anti-VEGF antibody (aV) via matrix metalloproteinase (MMP)-cleavable peptide linkers in a mouse model of CNV. Typically, the DNA origami-based therapeutic platform selectively accumulates in neovascularization lesions owing to the dual-targeting ability of the aV and Ap, followed by the cleavage of the peptide linker by MMPs to release the antibody. Together, the released antibody and Ap inhibited VEGF activity. Moreover, the residual bare DNA origami could effectively scavenge ROS, reducing oxidative stress at CNV sites and thus maximizing the synergistic effects of inhibiting neovascularization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肾缺血再灌注损伤(IRI)是急性肾损伤(AKI)发展的主要因素,并已导致相当高的发病率和死亡率。IRI后肾脏持续的炎症反应和过度的活性氧(ROS)可严重延迟组织修复,有效促进IRI再生具有挑战性。在这里,我们报道了一种使用白细胞介素-10(IL-10)增强免疫治疗的方法,通过将IL-10加载到矩形DNA折纸纳米结构(rDON)上来促进IRI再生.rDON可以显著增强IL-10的肾脏积累和保留时间,使其能够有效地将1型巨噬细胞极化为2型巨噬细胞,从而显著降低促炎因子,增加抗炎因子。此外,DNA折纸有助于减轻肾IRI期间ROS的有害影响。装载IL-10的DNA折纸的给药有效地改善了肾功能,导致血尿素氮显著减少,血清尿酸,和血清肌酐水平.我们的研究表明,在DNA折纸中整合抗炎细胞因子有望成为AKI和其他肾脏疾病患者细胞因子免疫治疗的战略方法。
    Renal ischemia-reperfusion injury (IRI) is a major contributing factor to the development of acute kidney injury (AKI) and has resulted in considerable morbidity and mortality. Persistent inflammatory responses and excessive reactive oxygen species (ROS) in the kidney following IRI can severely delay tissue repair, making it challenging to effectively promote IRI regeneration. Herein, we report an approach to enhance immunotherapy using interleukin-10 (IL-10) to promote IRI regeneration by loading IL-10 onto rectangular DNA origami nanostructures (rDON). rDON can significantly enhance the renal accumulation and retention time of IL-10, enabling it to effectively polarize type 1 macrophages into type 2 macrophages, thereby significantly reducing proinflammatory factors and increasing anti-inflammatory factors. In addition, DNA origami helps mitigate the harmful effects of ROS during renal IRI. The administration of IL-10-loaded DNA origami effectively improves kidney function, resulting in a notable reduction in blood urea nitrogen, serum uric acid, and serum creatinine levels. Our study demonstrates that the integration of anti-inflammatory cytokines within DNA origami holds promise as a strategic approach for cytokine immunotherapy in patients with AKI and other renal disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金黄色葡萄球菌(SA)对人类和动物健康构成严重威胁,需要低成本和高性能的分析平台来进行即时诊断。纤维素纸基场效应晶体管(FET)与RNA裂解DNAzymes(RCD)可以满足低成本的要求,然而,其高亲水性和亲脂性阻碍了生化修饰,导致灵敏度低,机械稳定性差,污垢性能差。在这里,我们提出了一种可控的自清洁FET,以简化生化改性,提高机械稳定性和防污性能。然后,我们构建了基于RCD的DNA纳米树以显著提高SA检测的灵敏度.对于可控自清洁FET,1H,1H,2H,合成了基于2H-全氟癸基三甲氧基硅烷的聚合物纳米颗粒,用于装饰纤维素纸和全碳纳米薄膜线。O2等离子体用于调节以降低氟碳链密度,然后控制敏感区域的疏水-疏油性能。因为带负电荷的DNA会影响半导体FET的灵敏度,设计了三个低成本的Y形分支,并应用于基于相似的DNA折纸技术合成了基于RCD的DNA纳米树,进一步提高了灵敏度。DNA-纳米树干由RCD组成,顶篷是使用多个Y形分支自组装的。可控自清洁FET生物传感器用于SA检测,无需培养,线性范围为1~105CFU/mL,可检出低值1CFU/mL。
    Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    圆二色性(CD)光谱法已被广泛用于检测和区分不同物质和结构的手性。然而,CD光谱学本质上很弱,通常与手性传感相关,从而限制了其应用范围。这里,我们报告了一个DNA折纸授权的超表面传感平台,通过超表面和DNA折纸的协同作用,通过增强的ΔCD实现高灵敏度的非手性/轻微手性传感。一个足月超表面,拥有超过60倍的平均光学手性增强,经过精心设计,可以与可重构的DNA折纸进行协同作用。我们通过实验证明了通过所提出平台的增强的ΔCD检测非手性/轻度手性DNA接头链,与没有超表面的平台相比,其灵敏度提高了10倍。我们的工作提出了一个高灵敏度的平台,用于通过手性光谱进行非手性/轻微手性传感,扩大手性光谱学的能力,并激发多功能人造纳米结构在不同领域的整合。
    Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA纳米结构已用于研究生物机械过程并构建人造纳米系统。许多应用场景需要能够稳健地产生大的单分子力的纳米器件。然而,大多数现有的动态DNA纳米结构是由空间分离的DNA链之间的概率杂交反应触发的,仅非确定性地产生相对较小的压缩力(≈0.4皮牛顿(pN))。这里,开发了嵌入剂触发的动态DNA折纸纳米结构,其中嵌入剂和纳米结构之间的大量局部结合反应共同导致相对较大的压缩力(≈11.2pN)的强大产生。具有不同刚度的生物分子负载,3、4和6螺旋DNA束被压缩力有效地弯曲。这项工作提供了一个强大而强大的力生成工具,用于在合成纳米系统中构建高度化学机械耦合的分子机器。
    DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在特定器官或细胞中起作用的纳米装置是合成生物学的最终目标之一。DNA纳米技术的最新进展,如DNA折纸,使我们能够构建纳米设备来递送有效载荷(例如,药物)对肿瘤。然而,由于DNA纳米结构的脆性和DNA纳米结构的低靶向能力,递送至特定器官仍然困难。这里,我们构建了艰难的DNA折纸,使我们能够在苛刻的条件(低pH)下将DNA折纸封装到基于脂质的纳米颗粒(LNP)中,利用目的基因(GOI)的器官特异性递送。我们发现,DNA折纸封装的LNP可以通过低温电子显微镜(Cryo-EM)揭示的不同LNP结构的贡献来增加小鼠器官内有效负载GOI(mRNA和siRNA)的功能。这些数据应该是未来使用DNA折纸纳米设备进行器官特异性基因表达控制的基础。
    Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于RNA的疗法已成为治疗各种疾病的有希望的方法,包括癌症,遗传性疾病,和传染病。然而,由于RNA分子易于降解和细胞摄取效率低下,因此将RNA分子递送到靶细胞中一直是主要挑战。为了克服这些障碍,基于DNA的纳米技术作为RNA疗法的潜在递送平台提供了前所未有的机会。由于其优异的特性,如可编程性和生物相容性,这些基于DNA的纳米结构,由组装成精确可编程结构的DNA分子组成,作为保护RNA有效载荷并将其递送到所需细胞目的地的理想建筑材料,已经引起了极大的关注。在这次审查中,我们重点介绍了三种基于DNA的纳米结构的设计和应用的当前进展:DNA折纸,与框架引导组装(FGA)相关的脂质纳米颗粒(LNP)技术,和用于递送RNA分子的DNA水凝胶。简要讨论了它们的生物医学应用,并强调了该领域的挑战和未来前景。
    RNA-based therapeutics have emerged as a promising approach for the treatment of various diseases, including cancer, genetic disorders, and infectious diseases. However, the delivery of RNA molecules into target cells has been a major challenge due to their susceptibility to degradation and inefficient cellular uptake. To overcome these hurdles, DNA-based nano technology offers an unprecedented opportunity as a potential delivery platform for RNA therapeutics. Due to its excellent characteristics such as programmability and biocompatibility, these DNA-based nanostructures, composed of DNA molecules assembled into precise and programmable structures, have garnered significant attention as ideal building materials for protecting and delivering RNA payloads to the desired cellular destinations. In this review, we highlight the current progress in the design and application of three DNA-based nanostructures: DNA origami, lipid-nanoparticle (LNP) technology related to frame guided assembly (FGA), and DNA hydrogel for the delivery of RNA molecules. Their biomedical applications are briefly discussed and the challenges and future perspectives in this field are also highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属等离子体纳米结构具有等离子体共振的光学性质,这在纳米光子学中具有巨大的发展潜力,生物电子学,和分子检测。然而,开发一种通用和直接的方法来制备具有可控尺寸和形态的金属等离子体纳米结构仍然是一个挑战。在这里,我们提出了一种合成策略,该策略利用可定制的自组装模板进行金属结构的形状定向生长。我们使用金纳米粒子(AuNP)作为连接器和DNA纳米管作为分支,通过调整连接器和分支之间的组装比例来定制具有不同分支的金纳米颗粒-DNA折纸复合纳米结构。随后,使用这种模板形状引导策略创建了等离子体金属纳米结构的各种形态,表现出表面增强拉曼散射(SERS)信号的增强。这种策略为合成具有多种形态的金属纳米结构提供了一种新方法,并为开发具有更广泛应用的可定制金属等离子体结构开辟了另一种可能性。
    The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    急性肺损伤(ALI)是一种严重的炎症性肺部疾病,死亡率高。活性氧(ROS)清除剂的早期干预可以减少ROS的积累,打破肺泡巨噬细胞(AMs)的炎症扩展链,并避免对肺泡上皮细胞和内皮细胞的不可逆损伤。这里,我们报道了细胞穿透性R9肽修饰的三角形DNA折纸纳米结构(tDONs-R9)作为一种新型可雾化药物,可以到达肺泡深部区域,并表现出对巨噬细胞的摄取偏好增强.tDONs-R9抑制促炎细胞因子的表达,并在巨噬细胞中驱动向抗炎M2表型的极化。在LPS诱导的ALI小鼠模型中,雾化TDONS-R9治疗缓解了压倒性的ROS,促炎细胞因子,肺部有嗜中性粒细胞浸润.我们的研究表明,tDONs-R9具有治疗ALI的潜力,可编程的DNA折纸纳米结构为肺部疾病治疗提供了新的药物递送平台,具有高的递送效率和生物安全性。
    Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA纳米结构表现出多种几何形状,并具有其他纳米材料中未发现的复杂功能。它们作为可定制的纳米平台,用于协调分子组分的空间排列,如生物分子,抗体,或者合成纳米材料.这通过将寡核苷酸掺入纳米结构的设计中来实现。在向癌细胞输送药物的领域,对增强功效和选择性的主动靶向测定越来越感兴趣。主动瞄准方法涉及“钥匙锁”机制,通过它的配体,识别肿瘤细胞上的特定受体,促进药物的释放。各种DNA纳米结构,包括DNA折纸,四面体,nanoflower,十字形,nanostar,纳米倍增管,和nanoccklebur,可以穿过细胞膜的脂质层,允许货物运送到细胞核。适体,容易在体外形成,由于它们对特定靶标的高选择性和低免疫原性,它们的靶向递送能力得到认可。这篇综述全面概述了药物递送系统中适体修饰的DNA纳米结构的形成和修饰的最新进展。
    DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a \"key-lock\" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号