DNA origami

DNA 折纸
  • 文章类型: Journal Article
    带有靶向配体的等离子体纳米材料对于基于表面增强拉曼散射(SERS)的生物成像应用非常感兴趣。然而,基于SERS的成像策略的实用性受到缺乏以高产率和高效率合成高灵敏度SERS活性纳米结构的直接方法的阻碍。在这项工作中,利用DNA折纸原理,我们报道了用于靶向癌症成像(SPECTRA)的基于SERS的等离子体耦合纳米探针的一流设计.纳米探针利用靶向癌细胞的DNA适体序列和振动标签,在细胞沉默的拉曼窗口中具有拉伸频率。通过整合DU145细胞特异性的适体序列,我们展示了SPECTRA对DU145细胞靶向成像的独特功能.我们的结果表明,可扩展性,成本效益,这种制造SERS纳米探针的方法的可重复性和可重复性可以作为创建在癌症生物学和生物医学成像领域具有广泛应用的纳米探针的通用平台。
    Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单一疗法,特别是使用针对血管内皮生长因子(VEGF)的抗体,在治疗脉络膜新生血管(CNV)方面显示出局限性,因为活性氧(ROS)也会加剧CNV的形成。在这里,我们开发了一种基于DNA折纸平台的联合疗法,该平台靶向眼部新生血管的多种成分.我们的研究表明,在小鼠模型中,玻璃体内注射通过基质金属蛋白酶(MMP)可裂解的肽接头与抗VEGF抗体(aV)缀合的VEGF适体(Ap)修饰的矩形DNA折纸片可显着抑制眼部新生血管形成。通常,由于aV和Ap的双重靶向能力,基于DNA折纸的治疗平台选择性地积累在新生血管病变中,然后通过MMP切割肽接头以释放抗体。一起,释放的抗体和Ap抑制VEGF活性。此外,剩余的裸DNA折纸可以有效清除ROS,减少CNV位点的氧化应激,从而最大限度地发挥抑制新生血管的协同作用。
    Monotherapy, especially the use of antibodies targeting vascular endothelial growth factor (VEGF), has shown limitations in treating choroidal neovascularization (CNV) since reactive oxygen species (ROS) also exacerbate CNV formation. Herein, we developed a combination therapy based on a DNA origami platform targeting multiple components of ocular neovascularization. Our study demonstrated that ocular neovascularization was markedly suppressed by intravitreal injection of a rectangular DNA origami sheet modified with VEGF aptamers (Ap) conjugated to an anti-VEGF antibody (aV) via matrix metalloproteinase (MMP)-cleavable peptide linkers in a mouse model of CNV. Typically, the DNA origami-based therapeutic platform selectively accumulates in neovascularization lesions owing to the dual-targeting ability of the aV and Ap, followed by the cleavage of the peptide linker by MMPs to release the antibody. Together, the released antibody and Ap inhibited VEGF activity. Moreover, the residual bare DNA origami could effectively scavenge ROS, reducing oxidative stress at CNV sites and thus maximizing the synergistic effects of inhibiting neovascularization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶活性的工程通常涉及蛋白质一级序列的改变,引入结构变化,从而导致功能改进。机械力已经被用来询问蛋白质生物物理学,导致在单分子研究中深入的机械见解。这里,我们使用简单的DNA弹簧施加小的拉力来干扰热稳定的醇脱氢酶的活性位点。开发了一些方法来研究本体催化条件下的不同弹簧长度和弹簧取向。跨活性位点施加的张力扩大了结合袋体积,并改变了酶对更长链长底物的偏好,这可以通过改变弹簧长度和所施加的力进行调整。当DNA弹簧被切断或旋转~90°时,底物特异性变化不会发生。这些发现证明了蛋白质工程中的另一种方法,其中活动站点架构可以使用施加的机械力动态和可逆地改造。
    The engineering of enzymatic activity generally involves alteration of the protein primary sequences, which introduce structural changes that give rise to functional improvements. Mechanical forces have been used to interrogate protein biophysics, leading to deep mechanistic insights in single-molecule studies. Here, we use simple DNA springs to apply small pulling forces to perturb the active site of a thermostable alcohol dehydrogenase. Methods were developed to enable the study of different spring lengths and spring orientations under bulk catalysis conditions. Tension applied across the active site expanded the binding pocket volume and shifted the preference of the enzyme for longer chain-length substrates, which could be tuned by altering the spring length and the resultant applied force. The substrate specificity changes did not occur when the DNA spring was either severed or rotated by ∼90°. These findings demonstrate an alternative approach in protein engineering, where active site architectures can be dynamically and reversibly remodeled using applied mechanical forces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA凝聚物,通过液-液相分离(LLPS)形成,作为用于创建人造细胞的有前途的软物质组件出现。DNA缩合物的优点是由于它们的无膜结构和它们的流体性质,它们通过表面的分子渗透性。然而,他们在表面设计方面面临挑战,例如,非预期的融合和对可渗透分子的调节较少。解决他们,我们报道了用DNA折纸纳米颗粒对DNA缩合物进行表面修饰,采用皮克林乳液策略。我们成功地在DNA缩合物上构建了具有DNA折纸涂层的核-壳结构,并通过响应DNA输入链,通过连接DNA起源进一步增强了缩合物对融合的稳定性。“装甲”阻止了DNA凝聚物的融合,能够形成DNA缩合物的多细胞样结构。此外,渗透性通过从涂层到铠装DNA冷凝物的状态变化而改变。装甲的DNA缩合物具有构建人造细胞的巨大潜力,为小分子提供增加的表面稳定性和选择性渗透性,同时保持分隔的空间和多细胞组织。
    DNA condensates, formed by liquid-liquid phase separation (LLPS), emerge as promising soft matter assemblies for creating artificial cells. The advantages of DNA condensates are their molecular permeability through the surface due to their membrane-less structure and their fluidic property. However, they face challenges in the design of their surface, e.g., unintended fusion and less regulation of permeable molecules. Addressing them, we report surface modification of DNA condensates with DNA origami nanoparticles, employing a Pickering-emulsion strategy. We successfully constructed core-shell structures with DNA origami coatings on DNA condensates and further enhanced the condensate stability toward fusion via connecting DNA origamis by responding to DNA input strands. The \'armoring\' prevented the fusion of DNA condensates, enabling the formation of multicellular-like structures of DNA condensates. Moreover, the permeability was altered through the state change from coating to armoring the DNA condensates. The armored DNA condensates have significant potential for constructing artificial cells, offering increased surface stability and selective permeability for small molecules while maintaining compartmentalized space and multicellular organization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过利用基于DNA折纸的等离子天线,提出了通过表面增强拉曼散射(SERS)检测单酶催化反应的方法。将单个辣根过氧化物酶(HRP)容纳在含有金纳米颗粒的DNA折纸纳米叉等离子体天线(DONA)上,能够在过氧化物还原反应过程中跟踪单分子SERS信号。这允许在合适的液体条件下监测单个酶催化中心和产物的结构。在这里,我们证明了HRP的化学变化和四甲基联苯胺(TMB)的出现,在催化反应之前和之后作为氢供体。结果表明,HRP中的铁采用Fe4和低自旋态,并引入H2O2,表明化合物I的形成。进行密度泛函理论(DFT)计算用于后面的催化步骤,以使实验拉曼/SERS光谱合理化。所提供的数据提供了在化学反应期间原位跟踪单个生物分子并进一步开发等离子体激元增强的生物催化的几种可能性。
    The detection of a single-enzyme catalytic reaction by surfaced-enhanced Raman scattering (SERS) is presented by utilizing DNA origami-based plasmonic antennas. A single horseradish peroxidase (HRP) was accommodated on a DNA origami nanofork plasmonic antenna (DONA) containing gold nanoparticles, enabling the tracing of single-molecule SERS signals during the peroxide reduction reaction. This allows monitoring of the structure of a single enzymatic catalytic center and products under suitable liquid conditions. Herein, we demonstrate the chemical changes of HRP and the appearance of tetramethylbenzidine (TMB), which works as a hydrogen donor before and after the catalytic reaction. The results show that the iron in HRP adopts Fe4+ and low spin states with the introduction of H2O2, indicating compound-I formation. Density functional theory (DFT) calculations were performed for later catalytic steps to rationalize the experimental Raman/SERS spectra. The presented data provide several possibilities for tracking single biomolecules in situ during a chemical reaction and further developing plasmon-enhanced biocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肾缺血再灌注损伤(IRI)是急性肾损伤(AKI)发展的主要因素,并已导致相当高的发病率和死亡率。IRI后肾脏持续的炎症反应和过度的活性氧(ROS)可严重延迟组织修复,有效促进IRI再生具有挑战性。在这里,我们报道了一种使用白细胞介素-10(IL-10)增强免疫治疗的方法,通过将IL-10加载到矩形DNA折纸纳米结构(rDON)上来促进IRI再生.rDON可以显著增强IL-10的肾脏积累和保留时间,使其能够有效地将1型巨噬细胞极化为2型巨噬细胞,从而显著降低促炎因子,增加抗炎因子。此外,DNA折纸有助于减轻肾IRI期间ROS的有害影响。装载IL-10的DNA折纸的给药有效地改善了肾功能,导致血尿素氮显著减少,血清尿酸,和血清肌酐水平.我们的研究表明,在DNA折纸中整合抗炎细胞因子有望成为AKI和其他肾脏疾病患者细胞因子免疫治疗的战略方法。
    Renal ischemia-reperfusion injury (IRI) is a major contributing factor to the development of acute kidney injury (AKI) and has resulted in considerable morbidity and mortality. Persistent inflammatory responses and excessive reactive oxygen species (ROS) in the kidney following IRI can severely delay tissue repair, making it challenging to effectively promote IRI regeneration. Herein, we report an approach to enhance immunotherapy using interleukin-10 (IL-10) to promote IRI regeneration by loading IL-10 onto rectangular DNA origami nanostructures (rDON). rDON can significantly enhance the renal accumulation and retention time of IL-10, enabling it to effectively polarize type 1 macrophages into type 2 macrophages, thereby significantly reducing proinflammatory factors and increasing anti-inflammatory factors. In addition, DNA origami helps mitigate the harmful effects of ROS during renal IRI. The administration of IL-10-loaded DNA origami effectively improves kidney function, resulting in a notable reduction in blood urea nitrogen, serum uric acid, and serum creatinine levels. Our study demonstrates that the integration of anti-inflammatory cytokines within DNA origami holds promise as a strategic approach for cytokine immunotherapy in patients with AKI and other renal disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物纳米孔至关重要地控制着生物分子在细胞中脂质膜的进出口。他们在生物物理学和生物技术中得到了广泛的应用,它们通常狭窄的地方,固定的直径使离子和小分子的选择性运输,以及用于测序应用的DNA和肽。然而,由于它们的通道尺寸小,它们排除了大分子的通过,例如,治疗学。这里,DNA折纸纳米技术的独特组合特性,受机器启发的设计,利用合成生物学,提供结构上可重构的DNA折纸机械孔(MP),其特征是通过分子触发调节大小的管腔。通过3D-DNA-PAINT超分辨率成像和染料流入测定证实了MPs在3种稳定状态之间的可控切换。在通过反相乳液cDICE技术重构脂质体膜中的大MPs后。跨膜转运的共聚焦成像显示具有可调阈值的尺寸选择行为。重要的是,构象变化是完全可逆的,证明了强大的机械切换,克服了周围脂质分子的压力。这些议员推进纳米孔技术,提供可按需调整的功能性纳米结构-从而影响药物输送等领域,生物分子分选,和感应,以及自下而上的合成生物学。
    Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金黄色葡萄球菌(SA)对人类和动物健康构成严重威胁,需要低成本和高性能的分析平台来进行即时诊断。纤维素纸基场效应晶体管(FET)与RNA裂解DNAzymes(RCD)可以满足低成本的要求,然而,其高亲水性和亲脂性阻碍了生化修饰,导致灵敏度低,机械稳定性差,污垢性能差。在这里,我们提出了一种可控的自清洁FET,以简化生化改性,提高机械稳定性和防污性能。然后,我们构建了基于RCD的DNA纳米树以显著提高SA检测的灵敏度.对于可控自清洁FET,1H,1H,2H,合成了基于2H-全氟癸基三甲氧基硅烷的聚合物纳米颗粒,用于装饰纤维素纸和全碳纳米薄膜线。O2等离子体用于调节以降低氟碳链密度,然后控制敏感区域的疏水-疏油性能。因为带负电荷的DNA会影响半导体FET的灵敏度,设计了三个低成本的Y形分支,并应用于基于相似的DNA折纸技术合成了基于RCD的DNA纳米树,进一步提高了灵敏度。DNA-纳米树干由RCD组成,顶篷是使用多个Y形分支自组装的。可控自清洁FET生物传感器用于SA检测,无需培养,线性范围为1~105CFU/mL,可检出低值1CFU/mL。
    Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    圆二色性(CD)光谱法已被广泛用于检测和区分不同物质和结构的手性。然而,CD光谱学本质上很弱,通常与手性传感相关,从而限制了其应用范围。这里,我们报告了一个DNA折纸授权的超表面传感平台,通过超表面和DNA折纸的协同作用,通过增强的ΔCD实现高灵敏度的非手性/轻微手性传感。一个足月超表面,拥有超过60倍的平均光学手性增强,经过精心设计,可以与可重构的DNA折纸进行协同作用。我们通过实验证明了通过所提出平台的增强的ΔCD检测非手性/轻度手性DNA接头链,与没有超表面的平台相比,其灵敏度提高了10倍。我们的工作提出了一个高灵敏度的平台,用于通过手性光谱进行非手性/轻微手性传感,扩大手性光谱学的能力,并激发多功能人造纳米结构在不同领域的整合。
    Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA纳米结构已用于研究生物机械过程并构建人造纳米系统。许多应用场景需要能够稳健地产生大的单分子力的纳米器件。然而,大多数现有的动态DNA纳米结构是由空间分离的DNA链之间的概率杂交反应触发的,仅非确定性地产生相对较小的压缩力(≈0.4皮牛顿(pN))。这里,开发了嵌入剂触发的动态DNA折纸纳米结构,其中嵌入剂和纳米结构之间的大量局部结合反应共同导致相对较大的压缩力(≈11.2pN)的强大产生。具有不同刚度的生物分子负载,3、4和6螺旋DNA束被压缩力有效地弯曲。这项工作提供了一个强大而强大的力生成工具,用于在合成纳米系统中构建高度化学机械耦合的分子机器。
    DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号