DNA origami

DNA 折纸
  • 文章类型: Journal Article
    许多质膜受体和配体在质膜表面上形成纳米级簇。然而,直接和精确地操纵纳米级蛋白质定位的方法是有限的,这使得理解这种聚类的影响变得困难。DNA折纸允许精确控制纳米级蛋白质定位,具有高保真度和适应性。这里,我们描述了我们如何使用这种技术来研究纳米级蛋白质聚类如何影响吞噬作用。我们提供了将DNA折纸结构缀合到支持的脂质双层涂层珠子上的方案,以测定吞噬作用和用于TIRF显微镜的平面玻璃盖玻片。该协议的核心方面可以转化为研究其他免疫信号通路,并且应该能够实施以前无法进入的调查。
    Many plasma membrane receptors and ligands form nanoscale clusters on the plasma membrane surface. However, methods for directly and precisely manipulating nanoscale protein localization are limited, making understanding the effects of this clustering difficult. DNA origami allows precise control over nanoscale protein localization with high fidelity and adaptability. Here, we describe how we have used this technique to study how nanoscale protein clustering affects phagocytosis. We provide protocols for conjugating DNA origami structures to supported lipid bilayer-coated beads to assay phagocytosis and planar glass coverslips for TIRF microscopy. The core aspects of this protocol can be translated to study other immune signaling pathways and should enable the implementation of previously inaccessible investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single-molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the \"sticky end\" and \"weaving welding\" attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self-dimerization of the origami monomers, likely via blunt-end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Membrane plays significant role in cellular enzymatic reactions. To better understand its function on membrane integral or bound enzymes, DNA origami and frame-guided assembly strategy are combined to construct a given-size, addressable enzyme-containing nanomembrane as a heterogeneous reactor to explore the enzymatic catalyst reaction on the membrane. The enzymes in the membrane are located precisely. This new kind of membrane can enrich hydrophobic substrate molecules in aqueous solution to the embedded enzymes. Otherwise, this nanomembrane shows the capability of substrate selectivity, which plays important role in the highly efficient and specific properties of enzymes in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号