DAMPs, Damage-associated molecular patterns

DAMPs,损伤相关分子模式
  • 文章类型: Journal Article
    慢性肾脏病(CKD)是全球健康关注和公共卫生重点。由于毒素的积累和炎性细胞因子的清除减少,这种情况通常涉及炎症,导致肾功能逐渐丧失。由于CKD的巨大负担,找到针对炎症的有效治疗策略至关重要.大量证据表明肾脏疾病与炎症体之间存在关联。作为一种众所周知的多蛋白信号复合物,NLR家族pyrin结构域包含3(NLRP3)炎症小体在诱导肾脏炎症和纤维化中起重要作用。靶向NLRP3炎性体的小分子抑制剂是治疗CKD的潜在药物。NLRP3炎症小体激活放大了炎症反应,促进细胞凋亡。因此,它可能有助于CKD的发作和进展,但CKD炎症小体激活背后的机制仍不清楚。在这次审查中,我们总结了有关NLRP3炎性体在CKD中的作用以及针对NLRP3炎性体的新策略的最新发现。
    Chronic kidney disease (CKD) is a global health concern and public health priority. The condition often involves inflammation due to the accumulation of toxins and the reduced clearance of inflammatory cytokines, leading to gradual loss of kidney function. Because of the tremendous burden of CKD, finding effective treatment strategies against inflammation is crucial. Substantial evidence suggests an association between kidney disease and the inflammasome. As a well-known multiprotein signaling complex, the NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in inducing renal inflammation and fibrosis. Small molecule inhibitors targeting the NLRP3 inflammasome are potential agents for the treatment of CKD.The NLRP3 inflammasome activation amplifies the inflammation response, promoting pyroptotic cell death. Thus, it may contribute to the onset and progression of CKD, but the mechanism behind inflammasome activation in CKD remains obscure.In this review, we summarized recent findings on the role of the NLRP3 inflammasome in CKD and new strategies targeting the NLRP3 inflammasome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    过度饮酒是一个全球性的医疗保健问题,具有巨大的社会,经济,和临床后果。虽然慢性,大量饮酒会导致身体几乎每个组织的结构损伤和/或破坏正常器官功能,肝脏受到的损害最大。这主要是因为肝脏是第一个通过门静脉循环从胃肠道吸收酒精的,因为肝脏是乙醇代谢的主要部位。酒精引起的损伤仍然是肝脏最普遍的疾病之一,也是肝脏疾病死亡或移植的主要原因。尽管对这种疾病的病理生理学进行了广泛的研究,目前还没有靶向治疗.鉴于酒精相关性肝病发病机制的多因素机制,可以想象,需要多种治疗方案来治疗该疾病谱中的不同阶段。
    Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经批准:维生素D影响免疫系统和炎症反应。已知补充维生素D可降低急性呼吸道感染的风险。在过去的两年里,许多研究人员研究了维生素D在COVID-19疾病病理生理中的作用。
    UNASSIGNED:从临床试验和系统评价中获得的发现强调,大多数COVID-19患者的维生素D水平降低,维生素D水平低增加了严重疾病的风险。这一证据似乎也在儿科人群中得到证实。
    UNASSIGNED:需要对儿童进行进一步的研究(系统评价和荟萃分析),以确认维生素D会影响COVID-19的结局,并确定补充剂的有效性和适当的剂量,持续时间和给药方式。
    UNASSIGNED: vitamin D influences the immune system and the inflammatory response. It is known that vitamin D supplementation reduces the risk of acute respiratory tract infection. In the last two years, many researchers have investigated vitamin D\'s role in the pathophysiology of COVID-19 disease.
    UNASSIGNED: the findings obtained from clinical trials and systematic reviews highlight that most patients with COVID-19 have decreased vitamin D levels and low levels of vitamin D increase the risk of severe disease. This evidence seems to be also confirmed in the pediatric population.
    UNASSIGNED: further studies (systematic review and meta-analysis) conducted on children are needed to confirm that vitamin D affects COVID-19 outcomes and to determine the effectiveness of supplementation and the appropriate dose, duration and mode of administration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    急性对慢性肝衰竭(ACLF)是发生在肝硬化患者的临床综合征,其特征是急性恶化,器官衰竭和高短期死亡率。酒精是ACLF的主要原因之一,也是最常见的慢性肝病的病因。在酒精性肝炎(AH)患者中,ACLF是一种常见且严重的并发症。其特征在于与感染风险增加相关的免疫功能障碍和最终诱导器官衰竭的高级全身性炎症。ACLF的诊断和严重程度决定AH预后,因此,ACLF预后评分应用于有器官衰竭的严重AH。皮质类固醇仍然是严重AH的一线治疗,但当ACLF相关时,它们似乎不足。已经确定并正在研究包含过度炎症反应和减少感染的新治疗靶标。肝移植仍然是严重AH和ACLF最有效的治疗方法之一,适当的器官分配是一个日益严峻的挑战。因此,对病理生理学有清晰的认识,AH中ACLF的临床意义和管理策略对肝病学家至关重要,在这篇综述中简要叙述了这一点。
    Acute-on-chronic liver failure (ACLF) is a clinical syndrome that occurs in patients with cirrhosis and is characterised by acute deterioration, organ failure and high short-term mortality. Alcohol is one of the leading causes of ACLF and the most frequently reported aetiology of underlying chronic liver disease. Among patients with alcoholic hepatitis (AH), ACLF is a frequent and severe complication. It is characterised by both immune dysfunction associated to an increased risk of infection and high-grade systemic inflammation that ultimately induce organ failure. Diagnosis and severity of ACLF determine AH prognosis, and therefore, ACLF prognostic scores should be used in severe AH with organ failure. Corticosteroids remain the first-line treatment for severe AH but they seem insufficient when ACLF is associated. Novel therapeutic targets to contain the excessive inflammatory response and reduce infection have been identified and are under investigation. With liver transplantation remaining one of the most effective therapies for severe AH and ACLF, adequate organ allocation represents a growing challenge. Hence, a clear understanding of the pathophysiology, clinical implications and management strategies of ACLF in AH is essential for hepatologists, which is narrated briefly in this review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤免疫治疗已成为新一代抗肿瘤治疗,但是它的适应症仍然集中在对免疫系统敏感的几种类型的肿瘤上。因此,扩大适应证、提高疗效的有效策略成为肿瘤免疫治疗进一步发展的关键要素。据报道,天然产物对癌症免疫疗法有这种作用,包括癌症疫苗,免疫检查点抑制剂,和过继免疫细胞疗法。其机制主要归因于肿瘤免疫抑制微环境的重塑,是帮助肿瘤避免免疫系统和癌症免疫疗法识别和攻击的关键因素。因此,这篇综述总结并总结了据报道可改善癌症免疫治疗的天然产物,并研究了其机制。我们发现皂苷,多糖,黄酮类化合物主要是三类天然产物,这反映了通过逆转肿瘤免疫抑制微环境与癌症免疫治疗相结合的显着效果。此外,这篇综述还收集了有关纳米技术用于改善天然产物缺点的研究。所有这些研究都显示了天然产物在癌症免疫疗法中的巨大潜力。
    Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸道综合症冠状病毒2(SARS-CoV2)或冠状病毒病2019(COVID-19)于2019年12月从武汉首次浮出水面,中国,用各种菌株席卷世界,迫使世卫组织在2020年3月宣布大流行。此外,COVID-19表现出广泛的表现,从发烧和疲劳到严重的呼吸道和心血管并发症。对COVID-19后综合征在所有疾病严重程度上影响COVID-19幸存者的了解很少。该疾病与出院后呼吸困难和疲劳最相关。然而,其他持续性症状如胸痛,心悸,气味,和味觉障碍。Covid-19急性期CRP和肌酐浓度高的患者更容易出现心脏后遗症。因此,高水平的心脏敏感性肌钙蛋白和低钾血症也可用于危险分层。此外,心脏损害可以表现为心肌炎,心包炎,节律异常.使用不同的诊断方式,如心电图(ECG),超声心动图,研究了心脏磁共振成像(MRI)评估心肌损伤的方法。然而,心血管并发症是PASC的常见表现,心脏症状严重程度的分类和CMR作为诊断工具的出现需要更多的证据.
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) or coronavirus disease 2019 (COVID-19) initially surfaced in December 2019 from Wuhan, China, sweeping the world with various strains, forcing the WHO to declare a pandemic epidemic in March 2020. Furthermore, COVID-19 manifests with a wide array of presentations from fever and fatigue to severe respiratory and cardiovascular complications. Post-COVID-19 syndrome is poorly understood affecting COVID-19 survivors at all levels of disease severity. The disease is most associated with post-discharge dyspnea and fatigue. However, other persistent symptoms as chest pains, palpitations, smell, and taste dysfunctions. Patients with high concentrations of CRP and creatinine in the acute phase of Covid-19 are more prone to cardiac sequelae. Therefore, high levels of cardiac-sensitive troponin and hypokalaemia can also be used for risk stratification. Furthermore, Cardiac damage can manifest as myocarditis, pericarditis, rhythm abnormalities. The use of different diagnostic modalities like electrocardiogram (ECG), echocardiogram, and cardiac magnetic resonance imaging (MRI)(CMR) to evaluate the myocardial damage were studied. However, Cardiovascular complications are a common manifestation of PASC, classification of severity of cardiac symptoms and the emergence of CMR as a diagnostic tool needs more evidence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    到目前为止,衰老是阿尔茨海默病(AD)最突出的危险因素,衰老和AD都与明显的代谢改变有关。由于开发有效的治疗干预措施来治疗AD显然是迫切需要的,在临床前模型和人类患者中调节全身和细胞内代谢的影响,关于疾病的发病机理,已经被探索过了。人们对与生物性别有关的不同风险和潜在目标策略的认识也越来越高,微生物组,和昼夜节律调节。作为细胞内代谢的重要组成部分,线粒体生物能学,线粒体质量控制机制,和线粒体相关的炎症反应已被考虑用于AD治疗干预。这篇综述总结并强调了这些努力。
    Aging is by far the most prominent risk factor for Alzheimer\'s disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    化疗和免疫疗法的结合通过引发免疫原性细胞死亡(ICD)来激发强大的免疫系统,在抑制肿瘤生长和改善免疫抑制肿瘤微环境(ITM)方面显示出巨大的潜力。然而,低劣的药物生物利用度限制了治疗效果。在这里,我们报道了一种通用的生物响应性阿霉素(DOX)基纳米凝胶,可实现肿瘤特异性药物共递送。设计并选择基于DOX的甘露糖纳米凝胶(DMNG)作为示例,以阐明联合化学免疫疗法的机制。不出所料,DMNG表现出显著的胶束稳定性,选择性药物释放和延长生存时间,受益于增强肿瘤通透性和延长血液循环。我们发现由DMNG递送的DOX可以通过促进ICD来诱导强大的抗肿瘤免疫应答。同时,从DMNGs释放的甘露糖被证明在体外和体内对乳腺癌具有强大的协同治疗作用,通过破坏糖酵解和三羧酸循环中的葡萄糖代谢。总的来说,基于DOX的纳米凝胶对肿瘤微环境的调节有望成为一种有效的候选策略,以克服基于ICD的免疫治疗的当前局限性。为免疫调节纳米药物的开发提供了范例。
    The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫检查点阻断疗法已经深刻地彻底改变了癌症免疫治疗领域。然而,尽管对各种癌症有很大的希望,免疫检查点抑制剂在结直肠癌(CRC)中的疗效仍然较低.这主要是由于肿瘤微环境(TME)的免疫抑制特征。新的证据表明,某些化疗药物诱导免疫原性细胞死亡(ICD),显示出重塑免疫抑制TME的巨大潜力。在这项研究中,使用体外和体内实验方法证实了人参皂苷Rg3(Rg3)作为针对CRC细胞的ICD诱导物的潜力。槲皮素(QTN)可引起活性氧(ROS),从而显着增强Rg3的ICD功效。为了改善与化疗药物相关的体内递送障碍,开发了叶酸(FA)靶向的聚乙二醇(PEG)修饰的两亲性环糊精纳米颗粒(NP)用于Rg3和QTN的共封装。得到的纳米制剂(CD-PEG-FA.Rg3.QTN)在原位CRC小鼠模型中显着延长了血液循环并增强了肿瘤靶向,导致免疫抑制TME的转化。此外,CD-PEG-FA。Rg3.QTN与抗PD-L1组合实现了动物的显著更长的存活。该研究为CRC的治疗提供了有希望的策略。
    The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    对乙酰氨基酚(APAP)是一种广泛使用的镇痛和解热药物,在治疗剂量下是安全的,但过量服用后可能导致严重的肝损伤甚至肝衰竭。APAP肝毒性小鼠模型与人类病理生理学密切相关。因此,这种临床相关模型经常用于研究药物性肝损伤的机制,甚至用于测试潜在的治疗干预措施.然而,模型的复杂性需要对病理生理学有透彻的了解,以获得有效的结果和可转化为临床的机制信息。然而,使用此模型的许多研究都存在缺陷,这危害了科学和临床的相关性。这篇综述的目的是提供一个模型框架,在该框架中可以获得机械上合理和临床相关的数据。讨论提供了对损伤机制以及如何研究它的见解,包括药物代谢的关键作用,线粒体功能障碍,坏死细胞死亡,自噬和无菌炎症反应。此外,讨论了使用此模型时最常犯的错误。因此,在研究APAP肝毒性时考虑这些建议将有助于发现更多临床相关的干预措施.
    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号