Super-resolution microscopy

超分辨率显微镜
  • 文章类型: Journal Article
    在动物细胞中,高尔基体是内膜分泌途径的中心枢纽。它负责处理,修改,蛋白质和脂质的分类。高尔基体独特的堆叠和带状结构构成了其精确功能的基础。在细胞应激或病理条件下,高尔基体的结构及其重要的糖基化修饰功能可能发生变化。采用合适的方法来研究高尔基体的结构和功能是至关重要的。特别是在评估目标蛋白参与高尔基体调节时。本文全面概述了用于确定高尔基体中靶蛋白的具体位置的各种显微镜技术。此外,它概述了评估目标基因敲除后高尔基体结构及其糖基化修饰功能变化的方法。
    In animal cells, the Golgi apparatus serves as the central hub of the endomembrane secretory pathway. It is responsible for the processing, modification, and sorting of proteins and lipids. The unique stacking and ribbon-like architecture of the Golgi apparatus forms the foundation for its precise functionality. Under cellular stress or pathological conditions, the structure of the Golgi and its important glycosylation modification function may change. It is crucial to employ suitable methodologies to study the structure and function of the Golgi apparatus, particularly when assessing the involvement of a target protein in Golgi regulation. This article provides a comprehensive overview of the diverse microscopy techniques used to determine the specific location of the target protein within the Golgi apparatus. Additionally, it outlines methods for assessing changes in the Golgi structure and its glycosylation modification function following the knockout of the target gene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在细胞命运转变期间,细胞重塑它们的转录组,染色质,和表观基因组;然而,在单细胞水平上,很难确定这些变化之间的时间动态和因果关系。这里,我们采用异核体介导的重编程系统作为单细胞模型,利用超分辨率成像技术,在多能性转换的早期阶段解剖关键时间事件.我们透露,在异核子形成之后,体细胞核经历整体染色质分解并去除抑制性组蛋白修饰H3K9me3和H3K27me3,而没有获得活性修饰H3K4me3和H3K9ac。多能性基因OCT4(POU5F1)在细胞融合后的第一个24小时内显示出新生和成熟的RNA转录,而不需要在其基因座处的初始开放染色质构型。南诺,相反,只有在细胞融合后48小时才有显著的新生RNA转录,但是,惊人的,早期表现出基因组重新开放。这些发现表明,细胞重编程过程中染色质压缩与基因激活之间的时间关系取决于基因环境。
    During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超分辨率显微镜促进了细胞生物学的发展,但是成像在细胞结构中具有低拷贝数的蛋白质仍然具有挑战性。核孔复合物(NPC)中指定蛋白质的数量有限,阻碍了在活细胞中的连续观察。尽管它们通常被用作评估各种SR方法的标准。为了解决这个问题,我们用Halo-SiR标记POM121,并使用带有稀疏反卷积的结构化照明显微镜(Sparse-SIM)对其进行成像。值得注意的是,与用串联连接的mCherry标记的相同蛋白质相比,POM121-SiR表现出超过六倍的荧光强度和四倍的增强对比度,同时在200帧的SR成像过程中显示出可忽略不计的光漂白。使用这种技术,我们发现了各种类型的NPC,包括环状和簇状结构,并观察到动态重构以及不同Nup组合物的顺序出现。总的来说,Halo-SiR与稀疏-SIM是一个强大的工具,用于扩展SR成像的动态结构的NPC在活细胞中,它也可能有助于可视化数量有限的蛋白质。
    Super-resolution microscopy has promoted the development of cell biology, but imaging proteins with low copy numbers in cellular structures remains challenging. The limited number of designated proteins within nuclear pore complexes (NPCs) impedes continuous observation in live cells, although they are often used as a standard for evaluating various SR methods. To address this issue, we tagged POM121 with Halo-SiR and imaged it using structured illumination microscopy with sparse deconvolution (Sparse-SIM). Remarkably, POM121-SiR exhibited more than six-fold fluorescence intensity and four-fold enhanced contrast compared to the same protein labeled with tandem-linked mCherry, while showing negligible photo-bleaching during SR imaging for 200 frames. Using this technique, we discovered various types of NPCs, including ring-like and cluster-like structures, and observed dynamic remodeling along with the sequential appearance of different Nup compositions. Overall, Halo-SiR with Sparse-SIM is a potent tool for extended SR imaging of dynamic structures of NPCs in live cells, and it may also help visualize proteins with limited numbers in general.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超分辨率荧光显微镜的发展对于理解纳米尺度的物理和生物学基础非常重要。然而,迄今为止,大多数超分辨率模式都需要复杂/昂贵的专用系统,例如多波束架构或具有固有伪影的复杂后处理程序。使用简单方法实现三维(3D)或多通道亚衍射显微成像仍然是一项具有挑战性和困难的任务。在这里,我们提出了使用单光束激发策略的3D高度非线性超分辨率显微镜,基于光子雪崩实现的超高非线性,对显微镜原理进行了建模和研究。根据模拟,高度非线性显微镜的点扩散函数可以在不同模式之间切换,并且可以在光子雪崩模式下三维缩小到亚衍射尺度。实验上,我们在简单的激光扫描配置中展示了3D光学纳米显微镜辅助巨大的光学非线性,实现横向分辨率低至58nm(λ/14)和轴向分辨率低至185nm(λ/5)与一个单一的低功率光束,连续波,近红外激光。我们进一步将光子雪崩效应扩展到许多其他发射器,以开发基于迁移光子雪崩机制的多色光子雪崩纳米探针,这使我们能够实现单光束双色亚衍射超分辨率显微成像。
    The development of super-resolution fluorescence microscopy is very essential for understanding the physical and biological fundamentals at nanometer scale. However, to date most super-resolution modalities require either complicated/costly purpose-built systems such as multiple-beam architectures or complex post-processing procedures with intrinsic artifacts. Achieving three-dimensional (3D) or multi-channel sub-diffraction microscopic imaging using a simple method remains a challenging and struggling task. Herein, we proposed 3D highly-nonlinear super-resolution microscopy using a single-beam excitation strategy, and the microscopy principle was modelled and studied based on the ultrahigh nonlinearity enabled by photon avalanches. According to the simulation, the point spread function of highly nonlinear microscopy is switchable among different modes and can shrink three-dimensionally to sub-diffraction scale at the photon avalanche mode. Experimentally, we demonstrated 3D optical nanoscopy assisted with huge optical nonlinearities in a simple laser scanning configuration, achieving a lateral resolution down to 58 nm (λ/14) and an axial resolution down to 185 nm (λ/5) with one single beam of low-power, continuous-wave, near-infrared laser. We further extended the photon avalanche effect to many other emitters to develop multi-color photon avalanching nanoprobes based on migrating photon avalanche mechanism, which enables us to implement single-beam dual-color sub-diffraction super-resolution microscopic imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    受空间和时间分辨率的限制,传统的光学显微镜无法对精致的超微结构细胞器和亚细胞器进行成像。超分辨率显微镜的出现使之成为可能。在这次审查中,我们专注于线粒体。我们总结了线粒体动力学的过程,调节线粒体形态的主要蛋白质,与线粒体动力学有关的疾病。-目的是将近年来开发的超分辨率显微镜应用于线粒体研究。通过提供正确的研究工具,我们将有助于促进该技术的应用,深入阐明与线粒体动力学相关的疾病的发病机理,辅助诊断和发展治疗。
    Limited by spatial and temporal resolution, traditional optical microscopy cannot image the delicate ultra-structure organelles and sub-organelles. The emergence of super-resolution microscopy makes it possible. In this review, we focus on mitochondria. We summarize the process of mitochondrial dynamics, the primary proteins that regulate mitochondrial morphology, the diseases related to mitochondrial dynamics. The purpose is to apply super-resolution microscopy developed during recent years to the mitochondrial research. By providing the right research tools, we will help to promote the application of this technique to the in-depth elucidation of the pathogenesis of diseases related to mitochondrial dynamics, assistdiagnosis and develop the therapeutic treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:突触强度强烈依赖于突触前递质释放和突触后受体密度的突触下组织,他们的改变被认为是病理的基础。虽然突触功能障碍是阿尔茨海默病(AD)的常见致病特征,目前尚不清楚突触蛋白纳米组织在AD中是否发生改变。这里,我们系统地描述了AD细胞和小鼠模型中突触下组织的变化。
    方法:我们使用免疫染色和超分辨率随机光学重建显微镜(STORM)成像来定量检查Aβ1-42处理的神经元培养物中的突触蛋白纳米组织和AD小鼠模型的皮质切片,APP23小鼠。
    结果:我们发现Aβ1-42处理培养的海马神经元降低了突触后支架和受体的突触保留,并破坏了它们与突触前递质释放位点的纳米级排列。在皮质切片中,我们发现,虽然野生型小鼠的GluA1受体组织在具有高局部密度的突触下纳米簇,APP23小鼠的受体在突触内分布更均匀。这次重组,随着整体受体密度的降低,导致谷氨酸能突触传递减少。同时,在APP23小鼠中,突触前释放引导RIM1/2和突触后支架蛋白PSD-95之间的跨突触排列减少.重要的是,这些重组随着年龄的增长而进展,并且在具有致密核的Aβ斑块附近的突触中更为明显。
    结论:我们的研究揭示了AD中突触纳米结构的时空特异性重组,并确定了致密核心淀粉样蛋白斑块是APP23小鼠的主要局部诱导剂。
    Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer\'s disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD.
    We used immunostaining and super-resolution stochastic optical reconstruction microscopy imaging to quantitatively examine the synaptic protein nano-organisation in both Aβ1-42-treated neuronal cultures and cortical sections from a mouse model of AD, APP23 mice.
    We found that Aβ1-42-treatment of cultured hippocampal neurons decreased the synaptic retention of postsynaptic scaffolds and receptors and disrupted their nanoscale alignment to presynaptic transmitter release sites. In cortical sections, we found that while GluA1 receptors in wild-type mice were organised in subsynaptic nanoclusters with high local densities, receptors in APP23 mice distributed more homogeneously within synapses. This reorganisation, together with the reduced overall receptor density, led to reduced glutamatergic synaptic transmission. Meanwhile, the transsynaptic alignment between presynaptic release-guiding RIM1/2 and postsynaptic scaffolding protein PSD-95 was reduced in APP23 mice. Importantly, these reorganisations were progressive with age and were more pronounced in synapses in close vicinity of Aβ plaques with dense cores.
    Our study revealed a spatiotemporal-specific reorganisation of synaptic nanostructures in AD and identifies dense-core amyloid plaques as the major local inductor in APP23 mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    荧光显微镜已成为生物学中用于以最小的扰动询问生命活动的常规工具。虽然荧光显微镜的分辨率在理论上只受光的衍射支配,在实践中可获得的分辨率也受到光学像差的存在的限制。过去的二十年见证了克服衍射障碍的超分辨率显微镜的出现,能够在纳米尺度上进行大量的生物学研究。自适应光学,从天文成像中借来的一种技术,已被应用于校正光学像差在基本上每一个显微镜模式,特别是在过去十年的超分辨率显微镜中,以恢复最佳图像质量和分辨率。在这次审查中,我们简要介绍了自适应光学的基本概念和主要的超分辨率成像技术的工作原理。我们重点介绍了在超分辨率显微镜中用于主动和动态像差校正的自适应光学的一些最新实现和进展。
    Fluorescence microscopy has become a routine tool in biology for interrogating life activities with minimal perturbation. While the resolution of fluorescence microscopy is in theory governed only by the diffraction of light, the resolution obtainable in practice is also constrained by the presence of optical aberrations. The past two decades have witnessed the advent of super-resolution microscopy that overcomes the diffraction barrier, enabling numerous biological investigations at the nanoscale. Adaptive optics, a technique borrowed from astronomical imaging, has been applied to correct for optical aberrations in essentially every microscopy modality, especially in super-resolution microscopy in the last decade, to restore optimal image quality and resolution. In this review, we briefly introduce the fundamental concepts of adaptive optics and the operating principles of the major super-resolution imaging techniques. We highlight some recent implementations and advances in adaptive optics for active and dynamic aberration correction in super-resolution microscopy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物超分辨率显微镜是新一代的成像技术,克服了传统光学显微镜在空间分辨率上的~200nm衍射极限。通过以分子特异性的纳米分辨率提供有关生物过程的新空间或时空信息,它在生物医学中起着越来越重要的作用。然而,它的技术限制也需要权衡以平衡其空间分辨率,时间分辨率,和样品的曝光。最近,深度学习在许多图像处理和计算机视觉任务中取得了突破性的性能。它在推动生物超分辨率显微镜的性能方面也显示出巨大的希望。在这个简短的审查,我们调查了使用深度学习来提高生物超分辨率显微镜性能的最新进展,主要关注超分辨率图像的计算重建。讨论了相关的关键技术挑战。尽管面临挑战,深度学习有望在生物超分辨率显微镜的发展中发挥重要作用。最后,我们对这一新研究领域的未来进行了展望。
    Biological super-resolution microscopy is a new generation of imaging techniques that overcome the ~200 nm diffraction limit of conventional light microscopy in spatial resolution. By providing novel spatial or spatiotemporal information on biological processes at nanometer resolution with molecular specificity, it plays an increasingly important role in biomedical sciences. However, its technical constraints also require trade-offs to balance its spatial resolution, temporal resolution, and light exposure of samples. Recently, deep learning has achieved breakthrough performance in many image processing and computer vision tasks. It has also shown great promise in pushing the performance envelope of biological super-resolution microscopy. In this brief review, we survey recent advances in using deep learning to enhance the performance of biological super-resolution microscopy, focusing primarily on computational reconstruction of super-resolution images. Related key technical challenges are discussed. Despite the challenges, deep learning is expected to play an important role in the development of biological super-resolution microscopy. We conclude with an outlook into the future of this new research area.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自出现以来,打破衍射极限的超分辨率显微镜(SRM)技术彻底改变了细胞生物学领域,这使研究人员能够以纳米级分辨率可视化细胞结构,多种颜色和单分子灵敏度。随着硬件的蓬勃发展和新型荧光探针的问世,SRM的影响已经超越了细胞生物学,延伸到纳米医学,材料科学和纳米技术,并显著推动了这些领域的重大突破。在这次审查中,我们将主要强调SRM在现代生物医学中的力量,讨论这些SRM技术如何彻底改变我们理解电池结构的方式,生物材料组装以及组装的生物材料如何与细胞器相互作用,最后将其提升到临床预诊断。此外,我们还对SRM当前的技术挑战和未来的改进方向进行了展望。我们希望这篇评论能提供有用的信息,从SRM技术的角度和SRM应用的角度激发新的思想,推动发展。
    Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM\'s applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA双链断裂(DSB)的修复引起三维(3D)染色质拓扑变化。最近的发现表明,53BP1在DSB周围组装成3D染色质拓扑模式。如何配置和调节这种高阶结构的形成仍然是一个谜。这里,我们报告说,SLFN5是DSB上53BP1拓扑排列的关键因素。使用超分辨率成像,我们发现,SLFN5结合53BP1染色质结构域,通过驱动DSB和去保护端粒上受损的染色质动力学来组装高阶微域结构。机械上,我们认为53BP1拓扑结构由两个过程形成:(1)由SLFN5-LINC微管轴驱动的染色质迁移率和(2)由SLFN5介导的53BP1寡聚体的组装。在哺乳动物中,SLFN5缺陷破坏DSB修复拓扑结构并损害非同源末端连接,端粒融合,类开关重组,和对聚(ADP-核糖)聚合酶抑制剂的敏感性。我们建立了一种形成高阶染色质拓扑结构的分子机制,以保护基因组的稳定性。
    Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号