Super-resolution microscopy

超分辨率显微镜
  • 文章类型: Journal Article
    荧光纳米显微镜,也被称为超分辨率显微镜,已经超越了传统的分辨率障碍,并使纳米分辨率的生物样品的可视化。已经开发了一系列超分辨率技术并将其用于研究分子分布,组织,和血细胞中的相互作用,以及血细胞相关疾病的潜在机制。在这次审查中,我们提供了各种荧光纳米技术的概述,概述了他们目前的发展阶段以及他们在功能和实用性方面面临的挑战。我们特别探索这些创新如何推动血小板(血小板)的分析,红细胞(红细胞)和白细胞(白细胞),亚细胞组分和分子相互作用的纳米级排列上的光。我们聚焦用于疾病诊断的荧光纳米显微镜发现的新型生物标志物,比如血小板病变,恶性肿瘤,和传染病。此外,我们讨论了技术障碍,并为未来的研究方向绘制了前景。这篇综述旨在强调荧光纳米显微镜对血细胞分析和疾病诊断领域的重要贡献。准备彻底改变我们的探索方法,理解,在分子水平上管理疾病。
    Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌产生铜绿铁载体以获取铁。它的合成涉及四种非核糖体肽合成酶(NRPS)的复杂协调,负责组装pyoverdine肽骨架。这些NRPS的精确细胞组织及其相互作用机制仍不清楚。这里,我们使用了几种单分子显微镜技术的组合来阐明NRPSs在产生pyoverdine的细胞内的空间排列.我们的发现表明,PvdL在定位和迁移模式方面与其他三个NRPS不同。PvdL主要位于内膜,而其他人也探索细胞质区室。利用多色单分子定位的力量,我们进一步揭示了PvdL和其他NRPS之间的共定位,提示PvdL在协调复杂的生物合成途径中的关键作用。我们的观察强烈表明,PvdL在参与pyoverdine生物合成的NRPS组装中充当中心协调器,假设关键的调节功能。
    The pyoverdine siderophore is produced by Pseudomonas aeruginosa to access iron. Its synthesis involves the complex coordination of four nonribosomal peptide synthetases (NRPSs), which are responsible for assembling the pyoverdine peptide backbone. The precise cellular organization of these NRPSs and their mechanisms of interaction remain unclear. Here, we used a combination of several single-molecule microscopy techniques to elucidate the spatial arrangement of NRPSs within pyoverdine-producing cells. Our findings reveal that PvdL differs from the three other NRPSs in terms of localization and mobility patterns. PvdL is predominantly located in the inner membrane, while the others also explore the cytoplasmic compartment. Leveraging the power of multicolor single-molecule localization, we further reveal co-localization between PvdL and the other NRPSs, suggesting a pivotal role for PvdL in orchestrating the intricate biosynthetic pathway. Our observations strongly indicates that PvdL serves as a central orchestrator in the assembly of NRPSs involved in pyoverdine biosynthesis, assuming a critical regulatory function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    淀粉样β(Aβ42)聚集体是阿尔茨海默病的特征性特征,但是探索它们的纳米级结构如何影响它们的生长和衰变仍然具有挑战性,使用当前的技术。这里,我们应用延时单分子取向定位显微镜(SMOLM)测量瞬时结合Aβ42原纤维的尼罗兰(NB)分子的取向和旋转“摆动”。我们将SMOLM测量的原纤维结构与单分子定位显微镜(SMLM)可视化的5至20分钟内的生长和衰变相关联。我们发现,稳定的Aβ42原纤维往往是有序的,并通过对齐的NB方向和小的摆动来表示。SMOLM还显示,增加的顺序和无序是生长和腐烂的原纤维的特征,分别。我们还观察到SMLM-隐形原纤维重塑,包括保护β-sheet组织的稳定增长和衰变模式。SMOLM揭示了增加的原纤维结构异质性与动态重塑相关,并且大规模的原纤维重塑往往源于强烈的异质局部区域。
    Amyloid-beta (Aβ42) aggregates are characteristic Alzheimer\'s disease signatures, but probing how their nanoscale architectures influence their growth and decay remains challenging using current technologies. Here, we apply time-lapse single-molecule orientation-localization microscopy (SMOLM) to measure the orientations and rotational \"wobble\" of Nile blue (NB) molecules transiently binding to Aβ42 fibrils. We correlate fibril architectures measured by SMOLM with their growth and decay over the course of 5 to 20 min visualized by single-molecule localization microscopy (SMLM). We discover that stable Aβ42 fibrils tend to be well-ordered and signified by well-aligned NB orientations and small wobble. SMOLM also shows that increasing order and disorder are signatures of growing and decaying fibrils, respectively. We also observe SMLM-invisible fibril remodeling, including steady growth and decay patterns that conserve β-sheet organization. SMOLM reveals that increased fibril architectural heterogeneity is correlated with dynamic remodeling and that large-scale fibril remodeling tends to originate from strongly heterogeneous local regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光谱单分子定位显微镜(sSMLM)利用了纳米显微镜和光谱学的优势,使亚10nm分辨率以及多标记样品的同时多色成像。使用深度学习重建原始sSMLM数据是一种在纳米级可视化亚细胞结构的有前途的方法。
    开发一种新的计算方法,利用深度学习来重建无标记和荧光标记的sSMLM成像数据。
    我们开发了一种基于双网络模型的深度学习算法,称为DsSMLM,来重建sSMLM数据。通过对不同样品进行成像实验来评估DsSMLM的有效性,包括无标记单链DNA(ssDNA)纤维,COS-7和U2OS细胞上的荧光标记组蛋白标记,和合成DNA折纸纳米探针的同时多色成像。
    对于无标签成像,在ssDNA纤维上获得6.22nm的空间分辨率;对于荧光标记成像,DsSMLM揭示了由细胞核上的组蛋白标记物定义的富含染色质和缺乏染色质的区域的分布,并同时提供了纳米探针样品的多色成像,区分在三个发射点标记的两种染料,分离距离为40nm。有了DsSMLM,我们观察到增强的光谱轮廓,单色成像的定位检测提高了8.8%,同时双色成像的定位检测提高了5.05%.
    我们证明了适用于无标记和荧光标记的sSMLM成像数据的基于深度学习的sSMLM成像重建的可行性。我们预计我们的技术将是高质量超分辨率成像的有价值的工具,用于更深入地了解DNA分子的光物理,并将有助于研究多个纳米细胞结构及其相互作用。
    UNASSIGNED: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale.
    UNASSIGNED: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data.
    UNASSIGNED: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler.
    UNASSIGNED: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging.
    UNASSIGNED: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules\' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在动物细胞中,高尔基体是内膜分泌途径的中心枢纽。它负责处理,修改,蛋白质和脂质的分类。高尔基体独特的堆叠和带状结构构成了其精确功能的基础。在细胞应激或病理条件下,高尔基体的结构及其重要的糖基化修饰功能可能发生变化。采用合适的方法来研究高尔基体的结构和功能是至关重要的。特别是在评估目标蛋白参与高尔基体调节时。本文全面概述了用于确定高尔基体中靶蛋白的具体位置的各种显微镜技术。此外,它概述了评估目标基因敲除后高尔基体结构及其糖基化修饰功能变化的方法。
    In animal cells, the Golgi apparatus serves as the central hub of the endomembrane secretory pathway. It is responsible for the processing, modification, and sorting of proteins and lipids. The unique stacking and ribbon-like architecture of the Golgi apparatus forms the foundation for its precise functionality. Under cellular stress or pathological conditions, the structure of the Golgi and its important glycosylation modification function may change. It is crucial to employ suitable methodologies to study the structure and function of the Golgi apparatus, particularly when assessing the involvement of a target protein in Golgi regulation. This article provides a comprehensive overview of the diverse microscopy techniques used to determine the specific location of the target protein within the Golgi apparatus. Additionally, it outlines methods for assessing changes in the Golgi structure and its glycosylation modification function following the knockout of the target gene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞核中DNA的动力学在细胞过程和命运中起作用,但是DNA移动性与DNA组织的分层水平之间的相互作用仍未得到充分研究。这里,我们利用DNA复制以无偏倚的全基因组方式直接标记基因组DNA.随后是标记的DNA的活细胞延时显微镜,同时结合不同分辨率水平的成像,并允许人们追踪同一细胞内跨组织水平的DNA运动。在不同的微观分辨率水平下对标记的DNA片段进行定量显示,其大小与使用3D超分辨率显微镜报告的DNA环相当。使用3D宽视场显微镜的拓扑关联域(TAD),还有整个染色体。通过采用先进的染色质跟踪和图像配准,我们发现,与TAD水平相比,DNA在单个环水平上表现出更高的迁移率,在染色体水平上甚至更低。此外,我们的发现表明染色质运动,不管决议如何,与G1/G2期相比,在细胞周期的S期减慢。此外,我们发现,一部分DNA环和TAD表现出定向运动,大部分表现为受限运动.我们的数据还表明,在核外围和核内部,DNA环和TAD的空间迁移率差异显示出比中间位置更低的速度和回转半径。基于这些见解,我们认为DNA的流动性和它的组织结构包括空间分布之间存在联系,影响细胞过程。
    The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全身麻醉药通过多种途径破坏脑网络动力学,部分通过抑制性离子通道的突触后增强以及神经胞吐的突触前抑制。临床常见的全身麻醉药物,如丙泊酚和异氟烷,已被证明与胞吐释放机制的核心部件相互作用并干扰,导致神经递质释放受损。然而,最近的研究表明,这些药物并不能平等地影响所有的突触亚型。我们使用活细胞超分辨率显微镜和胞吐作用和神经兴奋性的光遗传学读数,研究了在异氟烷全身麻醉下,突触前释放机制在成年雌性果蝇脑中多种神经递质系统中的作用。我们激活了神经递质特异性蘑菇体输出神经元(MBON),并在异氟烷麻醉下成像了突触前功能。我们发现异氟烷损害兴奋性胆碱能突触的突触释放和突触前蛋白动力学。相比之下,异氟烷对抑制性GABA能或谷氨酸能突触几乎没有影响。这些结果为全身麻醉提供了独特的抑制机制,由此神经胞吐在兴奋性突触处被选择性地削弱,而抑制性突触保持功能。这表明突触前抑制机制补充了这些药物的其他抑制作用。意义陈述全身麻醉药是作用于各种突触前和突触后蛋白的混杂药物。然而,它们在所有动物中产生一个共同的终点-行为反应性的丧失。使用光遗传学技术测量果蝇大脑中已识别神经元的功能读数,我们发现挥发性麻醉剂异氟烷损害兴奋性突触的神经递质释放,这与释放机制蛋白的固定有关。抑制性突触不受影响。这表明对麻醉剂作用机制的突触前特异性水平补充了对突触功能的其他已知作用,并潜在地解释了这些药物中的一些可能起作用以产生称为全身麻醉的共同终点。
    General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超越衍射屏障彻底改变了现代荧光显微镜。然而,统计抽样的内在局限性,可同时分析的通道的数量,硬件要求,和样品制备程序仍然是其在应用生物医学研究中广泛传播的障碍。这里,我们提出了一种基于自动多模态显微镜和超分辨率技术的新管道,采用易于获得的材料和仪器,并使用我们实验室开发的开源图像分析软件完成。结果表明,单分子定位显微镜(SMLM)对生物分子相互作用和大分子复合物定位研究的潜在影响。作为示范应用,我们探索了p53-53BP1相互作用的基础,显示了两种蛋白质和原位基础转录机制之间推定的大分子复合物的形成,因此提供了53BP1在维持p53反式激活功能中的直接作用的视觉证据。此外,高含量的SMLM提供了在细胞骨架和线粒体空间中存在53BP1复合物的证据,因此表明存在新的替代53BP1功能来支持p53活性。
    Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel pipeline based on automated multimodal microscopy and super-resolution techniques employing easily available materials and instruments and completed with open-source image-analysis software developed in our laboratory. The results show the potential impact of single-molecule localization microscopy (SMLM) on the study of biomolecules\' interactions and the localization of macromolecular complexes. As a demonstrative application, we explored the basis of p53-53BP1 interactions, showing the formation of a putative macromolecular complex between the two proteins and the basal transcription machinery in situ, thus providing visual proof of the direct role of 53BP1 in sustaining p53 transactivation function. Moreover, high-content SMLM provided evidence of the presence of a 53BP1 complex on the cell cytoskeleton and in the mitochondrial space, thus suggesting the existence of novel alternative 53BP1 functions to support p53 activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    γ-prefoldin(γPFD),在极度嗜热的产甲烷菌中发现的一种独特的伴侣,在体外自组装成细丝,到目前为止,已经使用透射电子显微镜和低温电子显微镜进行了观察。利用三维随机光学重建显微镜(3D-STORM),在这里,我们通过精确定位单个荧光分子来实现20nm分辨率,因此在体外和体内都能解决γPFD的超微结构。通过CF647NHS酯标签,我们首先用纯化的γPFD演示细丝和束的准确可视化。接下来,通过在创建3xFLAG标记的γPFD菌株后实施免疫荧光标记,我们成功地在JannaschiiM.细胞中显示γPFD。通过DNA的3D-STORM和双色STORM成像,我们显示了丝状γPFD结构在细胞内的广泛分布。这些发现为γPFD的结构和定位提供了有价值的见解,为不仅在古细菌中而且在其他微生物中研究有趣的纳米级成分开辟了可能性。
    Gamma-prefoldin (γPFD), a unique chaperone found in the extremely thermophilic methanogen Methanocaldococcus jannaschii, self-assembles into filaments in vitro, which so far have been observed using transmission electron microscopy and cryo-electron microscopy. Utilizing three-dimensional stochastic optical reconstruction microscopy (3D-STORM), here we achieve ∼20 nm resolution by precisely locating individual fluorescent molecules, hence resolving γPFD ultrastructure both in vitro and in vivo. Through CF647 NHS ester labeling, we first demonstrate the accurate visualization of filaments and bundles with purified γPFD. Next, by implementing immunofluorescence labeling after creating a 3xFLAG-tagged γPFD strain, we successfully visualize γPFD in M. jannaschii cells. Through 3D-STORM and two-color STORM imaging with DNA, we show the widespread distribution of filamentous γPFD structures within the cell. These findings provide valuable insights into the structure and localization of γPFD, opening up possibilities for studying intriguing nanoscale components not only in archaea but also in other microorganisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    传统光学显微镜的空间分辨率受衍射极限限制为数百纳米。超分辨率显微镜通过规避传统光学显微镜的衍射极限,实现一位数纳米分辨率。用于纳米级形貌成像的DNA点积累(DNA-PAINT)属于单分子定位超分辨率方法家族。DNA-PAINT的独特功能是它允许亚纳米分辨率,频谱无限复用,接近检测,和目标分子的定量计数。这里,我们描述了有效的DNA-PAINT显微镜检查的先决条件。
    The spatial resolution of conventional light microscopy is restricted by the diffraction limit to hundreds of nanometers. Super-resolution microscopy enables single digit nanometer resolution by circumventing the diffraction limit of conventional light microscopy. DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) belongs to the family of single-molecule localization super-resolution approaches. Unique features of DNA-PAINT are that it allows for sub-nanometer resolution, spectrally unlimited multiplexing, proximity detection, and quantitative counting of target molecules. Here, we describe prerequisites for efficient DNA-PAINT microscopy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号