关键词: Aberration correction Adaptive optics Deformable mirror Optical aberrations Super-resolution microscopy Wavefront sensor

来  源:   DOI:10.52601/bpr.2021.210015   PDF(Pubmed)

Abstract:
Fluorescence microscopy has become a routine tool in biology for interrogating life activities with minimal perturbation. While the resolution of fluorescence microscopy is in theory governed only by the diffraction of light, the resolution obtainable in practice is also constrained by the presence of optical aberrations. The past two decades have witnessed the advent of super-resolution microscopy that overcomes the diffraction barrier, enabling numerous biological investigations at the nanoscale. Adaptive optics, a technique borrowed from astronomical imaging, has been applied to correct for optical aberrations in essentially every microscopy modality, especially in super-resolution microscopy in the last decade, to restore optimal image quality and resolution. In this review, we briefly introduce the fundamental concepts of adaptive optics and the operating principles of the major super-resolution imaging techniques. We highlight some recent implementations and advances in adaptive optics for active and dynamic aberration correction in super-resolution microscopy.
摘要:
荧光显微镜已成为生物学中用于以最小的扰动询问生命活动的常规工具。虽然荧光显微镜的分辨率在理论上只受光的衍射支配,在实践中可获得的分辨率也受到光学像差的存在的限制。过去的二十年见证了克服衍射障碍的超分辨率显微镜的出现,能够在纳米尺度上进行大量的生物学研究。自适应光学,从天文成像中借来的一种技术,已被应用于校正光学像差在基本上每一个显微镜模式,特别是在过去十年的超分辨率显微镜中,以恢复最佳图像质量和分辨率。在这次审查中,我们简要介绍了自适应光学的基本概念和主要的超分辨率成像技术的工作原理。我们重点介绍了在超分辨率显微镜中用于主动和动态像差校正的自适应光学的一些最新实现和进展。
公众号