Super-resolution microscopy

超分辨率显微镜
  • 文章类型: Journal Article
    以前的研究报告说,一个温和的,非蛋白质变性,发热样温度升高可诱导哺乳动物细胞的未折叠蛋白反应(UPR)。我们的dSTORM超分辨率显微镜实验表明,UPR的主调节器,IRE1(需要肌醇的酶1)蛋白,在轻度热应激下,由于人骨肉瘤细胞系(U2OS)中的UPR激活而成簇。使用ER热黄色,针对内质网(ER)的温度敏感荧光探针,我们在小鼠胚胎成纤维细胞(MEF)细胞中检测到显着的细胞内产热。温度至少比外部环境(40°C)高8°C,导致与先前描述的线粒体相似的异常高的ER温度。MEF细胞ER中轻度热诱导的产热可能是由于Ca2/ATPase(SERCA)泵的解偶联。高ER温度在MEF细胞中引发了明显的胞浆热休克反应,在不存在ER产热和SERCA泵解偶联的U2OS细胞中,这一比例显着降低。我们的结果表明,根据固有的细胞特性,轻度高热诱导的细胞内产热定义了细胞反应机制并决定了高热应激的结果。
    Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物卵母细胞积累了超过一万个mRNA,其中三到四千个mRNA被翻译抑制。这些休眠mRNA的翻译激活的时间和位点对于促进卵母细胞成熟和胚胎发育至关重要。因此,这些mRNA如何在卵母细胞中积累和分布是一个有待探索的基本问题。能够以简单的方式高分辨率可视化mRNA分子的方法对于理解卵母细胞如何积累和调节休眠的mRNA将是有价值的。我们使用体外合成的RNA探针和针对小鼠卵母细胞和胚胎优化的酪胺信号放大(TSA)系统,开发了一种高度敏感的全装原位杂交方法。通过使用此方法,在未成熟卵母细胞和2细胞期胚胎中检测到Pou5f1/Oct4,Emi2和细胞周期蛋白B1mRNA。共聚焦显微镜显示这些mRNA在卵母细胞细胞质中形成颗粒状结构。Pou5f1/Oct4和细胞周期蛋白B1mRNA的结构在2细胞期胚胎中持续存在。Pou5f1/Oct4RNA颗粒在未成熟卵母细胞中表现出固体样特性,并在2细胞期胚胎中变成液体样液滴。用Emi2或Pou5f1/Oct4mRNA对细胞周期蛋白B1mRNA进行双重染色表明,这些mRNA以不同的RNA颗粒分布,彼此不重叠,并且细胞周期蛋白B1RNA颗粒的大小倾向于大于Emi2RNA颗粒。通过N-SIM超分辨率显微镜进一步分析了这些mRNA的结构和分布模式。这项分析表明,大尺寸的RNA颗粒由许多小尺寸的颗粒组成,提示休眠mRNA作为基础大小的RNA颗粒的积累和调节。本研究建立的方法可以很容易地可视化哺乳动物卵母细胞和胚胎中积累的mRNA的结构和分布,具有高灵敏度和超分辨率。该方法可用于研究促进成熟和早期发育过程的mRNA翻译控制的细胞和分子机制。
    Mammalian oocytes accumulate more than ten thousand mRNAs, of which three to four thousand mRNAs are translationally repressed. The timings and sites of translational activation of these dormant mRNAs are crucial for promoting oocyte maturation and embryonic development. How these mRNAs are accumulated and distributed in oocytes is therefore a fundamental issue to be explored. A method that enables visualization of mRNA molecules with high resolution in a simple manner would be valuable for understanding how oocytes accumulate and regulate the dormant mRNAs. We have developed a highly sensitive whole-mount in situ hybridization method using in vitro-synthesized RNA probes and the tyramide signal amplification (TSA) system optimized for mouse oocytes and embryos. By using this method, Pou5f1/Oct4, Emi2, and cyclin B1 mRNAs were detected in immature oocytes and 2-cell stage embryos. Confocal microscopy showed that these mRNAs formed granular structures in the oocyte cytoplasm. The structures of Pou5f1/Oct4 and cyclin B1 mRNAs persisted in 2-cell stage embryos. Pou5f1/Oct4 RNA granules exhibited a solid-like property in immature oocytes and became liquid-like droplets in 2-cell stage embryos. Double-staining of cyclin B1 mRNA with Emi2 or Pou5f1/Oct4 mRNA revealed that these mRNAs were distributed as different RNA granules without overlapping each other and that the size of cyclin B1 RNA granules tended to be larger than that of Emi2 RNA granules. The structures and distribution patterns of these mRNAs were further analyzed by N-SIM super-resolution microscopy. This analysis revealed that the large-sized RNA granules consist of many small-sized granules, suggesting the accumulation and regulation of dormant mRNAs as basal-sized RNA granules. The method established in this study can easily visualize the structure and distribution of mRNAs accumulated in mammalian oocytes and embryos with high sensitivity and super-resolution. This method is useful for investigating the cellular and molecular mechanisms of translational control of mRNAs by which maturation and early developmental processes are promoted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    防止非特异性结合对于敏感的基于表面的定量单分子显微镜至关重要。在这里,我们报告了一个简化的RainX-F127(RF-127)表面,具有改进的钝化。与通常使用的聚乙二醇(PEG)表面相比,该表面与蛋白质聚集体的非特异性结合减少了100倍。该方法与常见的单分子技术兼容,包括单分子下拉(SiMPull),超分辨率成像,抗体结合筛选和单个外泌体可视化。该方法还能够从包括人血清在内的各种生物流体中特异性检测α-突触核蛋白(α-syn)和tau聚集体,大脑提取物,脑脊液(CSF)和唾液。该方法的简单性进一步允许用于机器人辅助的高通量单分子实验的微孔板的功能化。总的来说,这个简单但改进的表面为定量单分子显微镜提供了一个通用的平台,而不需要专门的设备或人员。
    Preventing nonspecific binding is essential for sensitive surface-based quantitative single-molecule microscopy. Here we report a much-simplified RainX-F127 (RF-127) surface with improved passivation. This surface achieves up to 100-fold less nonspecific binding from protein aggregates compared to commonly used polyethylene glycol (PEG) surfaces. The method is compatible with common single-molecule techniques including single-molecule pull-down (SiMPull), super-resolution imaging, antibody-binding screening and single exosome visualization. This method is also able to specifically detect alpha-synuclein (α-syn) and tau aggregates from a wide range of biofluids including human serum, brain extracts, cerebrospinal fluid (CSF) and saliva. The simplicity of this method further allows the functionalization of microplates for robot-assisted high-throughput single-molecule experiments. Overall, this simple but improved surface offers a versatile platform for quantitative single-molecule microscopy without the need for specialized equipment or personnel.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    荧光纳米显微镜,也被称为超分辨率显微镜,已经超越了传统的分辨率障碍,并使纳米分辨率的生物样品的可视化。已经开发了一系列超分辨率技术并将其用于研究分子分布,组织,和血细胞中的相互作用,以及血细胞相关疾病的潜在机制。在这次审查中,我们提供了各种荧光纳米技术的概述,概述了他们目前的发展阶段以及他们在功能和实用性方面面临的挑战。我们特别探索这些创新如何推动血小板(血小板)的分析,红细胞(红细胞)和白细胞(白细胞),亚细胞组分和分子相互作用的纳米级排列上的光。我们聚焦用于疾病诊断的荧光纳米显微镜发现的新型生物标志物,比如血小板病变,恶性肿瘤,和传染病。此外,我们讨论了技术障碍,并为未来的研究方向绘制了前景。这篇综述旨在强调荧光纳米显微镜对血细胞分析和疾病诊断领域的重要贡献。准备彻底改变我们的探索方法,理解,在分子水平上管理疾病。
    Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铜绿假单胞菌产生铜绿铁载体以获取铁。它的合成涉及四种非核糖体肽合成酶(NRPS)的复杂协调,负责组装pyoverdine肽骨架。这些NRPS的精确细胞组织及其相互作用机制仍不清楚。这里,我们使用了几种单分子显微镜技术的组合来阐明NRPSs在产生pyoverdine的细胞内的空间排列.我们的发现表明,PvdL在定位和迁移模式方面与其他三个NRPS不同。PvdL主要位于内膜,而其他人也探索细胞质区室。利用多色单分子定位的力量,我们进一步揭示了PvdL和其他NRPS之间的共定位,提示PvdL在协调复杂的生物合成途径中的关键作用。我们的观察强烈表明,PvdL在参与pyoverdine生物合成的NRPS组装中充当中心协调器,假设关键的调节功能。
    The pyoverdine siderophore is produced by Pseudomonas aeruginosa to access iron. Its synthesis involves the complex coordination of four nonribosomal peptide synthetases (NRPSs), which are responsible for assembling the pyoverdine peptide backbone. The precise cellular organization of these NRPSs and their mechanisms of interaction remain unclear. Here, we used a combination of several single-molecule microscopy techniques to elucidate the spatial arrangement of NRPSs within pyoverdine-producing cells. Our findings reveal that PvdL differs from the three other NRPSs in terms of localization and mobility patterns. PvdL is predominantly located in the inner membrane, while the others also explore the cytoplasmic compartment. Leveraging the power of multicolor single-molecule localization, we further reveal co-localization between PvdL and the other NRPSs, suggesting a pivotal role for PvdL in orchestrating the intricate biosynthetic pathway. Our observations strongly indicates that PvdL serves as a central orchestrator in the assembly of NRPSs involved in pyoverdine biosynthesis, assuming a critical regulatory function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    淀粉样β(Aβ42)聚集体是阿尔茨海默病的特征性特征,但是探索它们的纳米级结构如何影响它们的生长和衰变仍然具有挑战性,使用当前的技术。这里,我们应用延时单分子取向定位显微镜(SMOLM)测量瞬时结合Aβ42原纤维的尼罗兰(NB)分子的取向和旋转“摆动”。我们将SMOLM测量的原纤维结构与单分子定位显微镜(SMLM)可视化的5至20分钟内的生长和衰变相关联。我们发现,稳定的Aβ42原纤维往往是有序的,并通过对齐的NB方向和小的摆动来表示。SMOLM还显示,增加的顺序和无序是生长和腐烂的原纤维的特征,分别。我们还观察到SMLM-隐形原纤维重塑,包括保护β-sheet组织的稳定增长和衰变模式。SMOLM揭示了增加的原纤维结构异质性与动态重塑相关,并且大规模的原纤维重塑往往源于强烈的异质局部区域。
    Amyloid-beta (Aβ42) aggregates are characteristic Alzheimer\'s disease signatures, but probing how their nanoscale architectures influence their growth and decay remains challenging using current technologies. Here, we apply time-lapse single-molecule orientation-localization microscopy (SMOLM) to measure the orientations and rotational \"wobble\" of Nile blue (NB) molecules transiently binding to Aβ42 fibrils. We correlate fibril architectures measured by SMOLM with their growth and decay over the course of 5 to 20 min visualized by single-molecule localization microscopy (SMLM). We discover that stable Aβ42 fibrils tend to be well-ordered and signified by well-aligned NB orientations and small wobble. SMOLM also shows that increasing order and disorder are signatures of growing and decaying fibrils, respectively. We also observe SMLM-invisible fibril remodeling, including steady growth and decay patterns that conserve β-sheet organization. SMOLM reveals that increased fibril architectural heterogeneity is correlated with dynamic remodeling and that large-scale fibril remodeling tends to originate from strongly heterogeneous local regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光谱单分子定位显微镜(sSMLM)利用了纳米显微镜和光谱学的优势,使亚10nm分辨率以及多标记样品的同时多色成像。使用深度学习重建原始sSMLM数据是一种在纳米级可视化亚细胞结构的有前途的方法。
    开发一种新的计算方法,利用深度学习来重建无标记和荧光标记的sSMLM成像数据。
    我们开发了一种基于双网络模型的深度学习算法,称为DsSMLM,来重建sSMLM数据。通过对不同样品进行成像实验来评估DsSMLM的有效性,包括无标记单链DNA(ssDNA)纤维,COS-7和U2OS细胞上的荧光标记组蛋白标记,和合成DNA折纸纳米探针的同时多色成像。
    对于无标签成像,在ssDNA纤维上获得6.22nm的空间分辨率;对于荧光标记成像,DsSMLM揭示了由细胞核上的组蛋白标记物定义的富含染色质和缺乏染色质的区域的分布,并同时提供了纳米探针样品的多色成像,区分在三个发射点标记的两种染料,分离距离为40nm。有了DsSMLM,我们观察到增强的光谱轮廓,单色成像的定位检测提高了8.8%,同时双色成像的定位检测提高了5.05%.
    我们证明了适用于无标记和荧光标记的sSMLM成像数据的基于深度学习的sSMLM成像重建的可行性。我们预计我们的技术将是高质量超分辨率成像的有价值的工具,用于更深入地了解DNA分子的光物理,并将有助于研究多个纳米细胞结构及其相互作用。
    UNASSIGNED: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale.
    UNASSIGNED: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data.
    UNASSIGNED: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler.
    UNASSIGNED: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging.
    UNASSIGNED: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules\' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在动物细胞中,高尔基体是内膜分泌途径的中心枢纽。它负责处理,修改,蛋白质和脂质的分类。高尔基体独特的堆叠和带状结构构成了其精确功能的基础。在细胞应激或病理条件下,高尔基体的结构及其重要的糖基化修饰功能可能发生变化。采用合适的方法来研究高尔基体的结构和功能是至关重要的。特别是在评估目标蛋白参与高尔基体调节时。本文全面概述了用于确定高尔基体中靶蛋白的具体位置的各种显微镜技术。此外,它概述了评估目标基因敲除后高尔基体结构及其糖基化修饰功能变化的方法。
    In animal cells, the Golgi apparatus serves as the central hub of the endomembrane secretory pathway. It is responsible for the processing, modification, and sorting of proteins and lipids. The unique stacking and ribbon-like architecture of the Golgi apparatus forms the foundation for its precise functionality. Under cellular stress or pathological conditions, the structure of the Golgi and its important glycosylation modification function may change. It is crucial to employ suitable methodologies to study the structure and function of the Golgi apparatus, particularly when assessing the involvement of a target protein in Golgi regulation. This article provides a comprehensive overview of the diverse microscopy techniques used to determine the specific location of the target protein within the Golgi apparatus. Additionally, it outlines methods for assessing changes in the Golgi structure and its glycosylation modification function following the knockout of the target gene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞核中DNA的动力学在细胞过程和命运中起作用,但是DNA移动性与DNA组织的分层水平之间的相互作用仍未得到充分研究。这里,我们利用DNA复制以无偏倚的全基因组方式直接标记基因组DNA.随后是标记的DNA的活细胞延时显微镜,同时结合不同分辨率水平的成像,并允许人们追踪同一细胞内跨组织水平的DNA运动。在不同的微观分辨率水平下对标记的DNA片段进行定量显示,其大小与使用3D超分辨率显微镜报告的DNA环相当。使用3D宽视场显微镜的拓扑关联域(TAD),还有整个染色体。通过采用先进的染色质跟踪和图像配准,我们发现,与TAD水平相比,DNA在单个环水平上表现出更高的迁移率,在染色体水平上甚至更低。此外,我们的发现表明染色质运动,不管决议如何,与G1/G2期相比,在细胞周期的S期减慢。此外,我们发现,一部分DNA环和TAD表现出定向运动,大部分表现为受限运动.我们的数据还表明,在核外围和核内部,DNA环和TAD的空间迁移率差异显示出比中间位置更低的速度和回转半径。基于这些见解,我们认为DNA的流动性和它的组织结构包括空间分布之间存在联系,影响细胞过程。
    The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号