• 文章类型: Journal Article
    OBJECTIVE: The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds.
    METHODS: Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load.
    RESULTS: Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds.
    CONCLUSIONS: Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    Antibiotics\' usefulness is threatened by multi-drugs resistance in harmful microorganisms because of abuse and regulatory problems. Emerging microbes, resistance mechanisms and antimicrobial drugs all require extensive investigation. Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. From July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College\'s Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. The solvents Methanol and 10.0% Di-Methyl Sulfoxide (DMSO) were used to make the extract. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized, and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts\' more precise margin of antimicrobial sensitivity. At 80mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Pseudomonas aeruginosa the MIC were 60 and 70mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1μg/ml against Staphylococcus aureus and 1.5μg/ml for Pseudomonas aeruginosa. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Pseudomonas aeruginosa are sensitive to the methanolic extract of black pepper seeds\' antibacterial properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Nanomaterial-based synergistic antibacterial agents are considered as promising tools to combat infections caused by antibiotic-resistant bacteria. Herein, multifunctional mesoporous silica nanoparticle (MSN)-based nanocomposites were fabricated for synergistic photothermal/photodynamic/chemodynamic therapy against methicillin-resistant Staphylococcus aureus (MRSA). MSN loaded with indocyanine green (ICG) as a core, while Prussian blue (PB) nanostructure was decorated on MSN surface via in situ growth method to form a core-shell nanohybrid (MSN-ICG@PB). Upon a near infrared (NIR) laser excitation, MSN-ICG@PB (200 μg mL-1) exhibited highly efficient singlet oxygen (1O2) generation and hyperthermia effect (48.7℃). In the presence of exogenous H2O2, PB with peroxidase-like activity promoted the generation of toxic hydroxyl radicals (•OH) to achieve chemodynamic therapy (CDT). PTT can greatly increase the permeability of bacterial lipid membrane, facilitating the generated 1O2 and •OH to kill bacteria more efficiently. Under NIR irradiation and exogenous H2O2, MSN-ICG@PB (200 μg mL-1) with good biocompatibility exhibited a synergistic antibacterial effect against MRSA with high bacterial killing efficiency (>98 %). Moreover, due to the synergistic bactericidal mechanism, MSN-ICG@PB with satisfactory biosafety makes it a promising antimicrobial agent to fight against MRSA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    UNASSIGNED: The formation of biofilms, characterized by cell aggregation and extracellular polymeric substance (EPS) production, is a common feature of periprosthetic joint infections (PJI).
    UNASSIGNED: The current study aimed to investigate the development of biofilm features in vitro within less than 3 weeks by Staphylococcus aureus isolated from PJIs.
    UNASSIGNED: Biofilms were grown on sandblasted titanium discs, and fluorescence spectroscopy and microscopy were used to observe biofilm maturation for 21 days.
    UNASSIGNED: DNA mass decreased initially, then increased from day 5 onwards, and decreased again after day 7. The proportion of living to dead bacteria oscillated until day 7 and increased at day 10 for strain A and day 14 for strain B. EPS mass decreased initially and then continuously increased. Multilayer bacterial organization was observed at day 7.
    UNASSIGNED: Cell aggregation occurred during the first week, followed by EPS production in the second week, and characteristic biofilm features were observed within 1 to 2 weeks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    报道了一种家用便携式双层过滤和浓缩装置的工程,该装置带有普通注射器,用于快速分析水样。该装置的核心元件是两个安装的过滤膜,对于各自的功能具有不同的孔径。上层过滤膜用于初步拦截大的干扰杂质(拦截膜),而下滤膜用于收集多个目标病原体(富集膜)进行测定。这种组合可以使被污染的环境水,以地表水为例,通过设备快速过滤,并保留了目标细菌大肠杆菌O157:H7,金黄色葡萄球菌,和单增李斯特菌在下部富集膜上。与表面增强拉曼光谱(SERS)平台集成以解码SERS标签(SERS-TagCVa,SERS-TagR6G,和SERS-TagMB)已经基于抗体介导的免疫识别作用标记在每种富集细菌上,快速分离,浓度,并实现了对大量污染环境水中多种致病菌的检测。结果表明,在30分钟内,湖水中的所有目标细菌可以在101至106CFUmL-1的范围内同时准确地测量,检出限为10.0CFUmL-1,无需任何预培养程序。这项工作突出了简单性,快速,廉价,选择性,以及所构建的同时检测水性样品中多种病原体的方法的鲁棒性。该协议为促进开发不发达国家或发展中国家饮用水和食品安全监管的通用分析工具开辟了新的途径。
    The engineering of a home-made portable double-layer filtration and concentration device with the common syringe for rapid analysis of water samples is reported. The core elements of the device were two installed filtration membranes with different pore sizes for respective functions. The upper filtration membrane was used for preliminary intercepting large interfering impurities (interception membrane), while the lower filtration membrane was used for collecting multiple target pathogens (enrichment membrane) for determination. This combination can make the contaminated environmental water, exemplified by surface water, filtrated quickly through the device and just retained the target bacteria of Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes on the lower enrichment membrane. Integrating with surface-enhanced Raman spectra (SERS) platform to decode the SERS-Tags (SERS-TagCVa, SERS-TagR6G, and SERS-TagMB) already labeled on each of the enriched bacteria based the antibody-mediated immuno-recognition effect, fast separation, concentration, and detection of multiple pathogenic bacteria from the bulk of contaminated environmental water were realized. Results show that within 30 min, all target bacteria in the lake water can be simultaneously and accurately measured in the range from 101 to 106 CFU mL-1 with detection limit of 10.0 CFU mL-1 without any pre-culture procedures. This work highlights the simplicity, rapidness, cheapness, selectivity, and the robustness of the constructed method for simultaneous detecting multiple pathogens in aqueous samples. This protocol opens a new avenue for facilitating the development of versatile analytical tools for drinking water and food safety monitoring in underdeveloped or developing countries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    耐甲氧西林葡萄球菌(MRS)与新生儿感染有关,阴道的定植是垂直传播的主要来源。COVID-19大流行改变了抗生素的使用频率,可能导致细菌在人类中定殖的动力学变化。在这里,我们确定了在里约热内卢参加一次产妇的孕妇中MRS定植率,巴西在COVID-19大流行之前(2019年1月至2020年3月)和期间(2020年5月至2021年3月)。将非阴道样品(n=806[大流行前521个样品和大流行期间285个])划线到显色培养基上。通过MALDI-TOFMS鉴定菌落通过PCR评估mecA基因的检测和SCCmec分型,并根据CLSI指南进行抗菌药物敏感性测试。大流行爆发后,MRS定植率显着增加(p<0.05),从8.6%(45)增加到54.7%(156)。总的来说,215个(26.6%)MRS分离株被检测到,其中溶血链球菌是最常见的物种(MRSH,84.2%;181个分离株)。SCCmecV型是MRS中最常见的(63.3%;136),31.6%(68)的MRS菌株具有不可分型的SCCmec,由于ccr和mecA复合物的新组合。在MRS菌株中,41.9%(90)对至少3种不同类别的抗微生物剂耐药,其中60%(54)是携带SCCmecV的溶血链球菌。MRS定殖率和在本研究中检测到的多药耐药变种的出现表明需要在母婴人群中继续监测这种重要病原体。
    Methicillin-resistant Staphylococcus (MRS) has been associated with neonatal infections, with colonization of the anovaginal tract being the main source of vertical transmission. The COVID-19 pandemic has altered the frequency of antibiotic usage, potentially contributing to changes in the dynamics of bacterial agents colonizing humans. Here we determined MRS colonization rates among pregnant individuals attending a single maternity in Rio de Janeiro, Brazil before (January 2019-March 2020) and during (May 2020-March 2021) the COVID-19 pandemic. Anovaginal samples (n = 806 [521 samples before and 285 during the pandemic]) were streaked onto chromogenic media. Colonies were identified by MALDI-TOF MS. Detection of mecA gene and SCCmec typing were assessed by PCR and antimicrobial susceptibility testing was done according to CLSI guidelines. After the onset of the pandemic, MRS colonization rates increased significantly (p < 0.05) from 8.6% (45) to 54.7% (156). Overall, 215 (26.6%) MRS isolates were detected, of which S. haemolyticus was the most prevalent species (MRSH, 84.2%; 181 isolates). SCCmec type V was the most frequent among MRS (63.3%; 136), and 31.6% (68) of MRS strains had a non-typeable SCCmec, due to new combinations of ccr and mecA complexes. Among MRS strains, 41.9% (90) were resistant to at least 3 different classes of antimicrobial agents, and 60% (54) of them were S. haemolyticus harboring SCCmec V. MRS colonization rates and the emergence of multidrug-resistant variants detected in this study indicate the need for continuing surveillance of this important pathogen within maternal and child populations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由多重耐药细菌(MDR)引起的严重感染数量的增加正在挑战我们的社会。尽管努力发现新的治疗选择,很少有针对MDR的抗生素获得食品和药物管理局(FDA)的批准。由于其在体外证明了对抗MDR病原体的能力,乳酸菌已成为有希望的治疗替代品。我们先前的共培养研究表明,鼠李糖乳杆菌CRL2244对耐碳青霉烯类鲍曼不动杆菌(CRAB)菌株具有有效的杀伤作用。在这里,我们报告了从Lcb获得的无细胞条件培养基(CFCM)样品。鼠李糖CRL2244培养物在不同时间孵育显示抗43种不同病原体的抗菌活性,包括CRAB,耐甲氧西林金黄色葡萄球菌(MRSA)和碳青霉烯酶肺炎克雷伯菌(KPC)阳性菌株。此外,transwell和超滤分析以及物理和化学/生化测试表明,Lcb。鼠李糖CRL2244分泌<3kDa的代谢产物,其抗菌活性不会因pH的轻度变化而受到明显损害,温度和各种酶处理。此外,敏感性和时间杀灭试验表明,Lcb的杀菌活性。鼠李糖CRL2244代谢物增强一些当前FDA批准的抗生素的活性。我们假设这一观察可能是由于Lcb的影响。鼠李糖CRL2244代谢物对细胞形态和编码苯乙酸(PAA)和组氨酸分解代谢Hut途径的基因的转录表达增强,金属采集和生物膜形成,所有这些都与细菌毒力有关。有趣的是,Lcb的细胞外存在。鼠李糖CRL2244诱导编码CidA/LgrA蛋白的基因转录,这与一些细菌的程序性细胞死亡有关。总的来说,本报告中的发现强调了Lcb释放的化合物的有希望的潜力。鼠李糖CRL2244作为替代和/或补充选择来治疗由鲍曼不动杆菌以及其他MDR细菌病原体引起的感染。
    A growing increase in the number of serious infections caused by multidrug resistant bacteria (MDR) is challenging our society. Despite efforts to discover novel therapeutic options, few antibiotics targeting MDR have been approved by the Food and Drug Administration (FDA). Lactic acid bacteria have emerged as a promising therapeutic alternative due to their demonstrated ability to combat MDR pathogens in vitro. Our previous co-culture studies showed Lacticaseibacillus rhamnosus CRL 2244 as having a potent killing effect against carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Here we report that cell-free conditioned media (CFCM) samples obtained from Lcb. rhamnosus CRL 2244 cultures incubated at different times display antimicrobial activity against 43 different pathogens, including CRAB, methicillin-resistant Staphylococcus aureus (MRSA) and carbapenemase Klebsiella pneumoniae (KPC)-positive strains. Furthermore, transwell and ultrafiltration analyses together with physical and chemical/biochemical tests showed that Lcb. rhamnosus CRL 2244 secretes a <3 kDa metabolite(s) whose antimicrobial activity is not significantly impaired by mild changes in pH, temperature and various enzymatic treatments. Furthermore, sensitivity and time-kill assays showed that the bactericidal activity of the Lcb. rhamnosus CRL 2244 metabolite(s) enhances the activity of some current FDA approved antibiotics. We hypothesize that this observation could be due to the effects of Lcb. rhamnosus CRL 2244 metabolite(s) on cell morphology and the enhanced transcriptional expression of genes coding for the phenylacetate (PAA) and histidine catabolic Hut pathways, metal acquisition and biofilm formation, all of which are associated with bacterial virulence. Interestingly, the extracellular presence of Lcb. rhamnosus CRL 2244 induced the transcription of the gene coding for the CidA/LgrA protein, which is involved in programmed cell death in some bacteria. Overall, the findings presented in this report underscore the promising potential of the compound(s) released by Lcb. rhamnosus CRL2244 as an alternative and/or complementary option to treat infections caused by A. baumannii as well as other MDR bacterial pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项前瞻性试点研究的目的是比较假定为远处局灶性疾病的患者(11例)和接受扁桃体切除术的患者的扁桃体切除的培养物和微生物组结果。由于其他原因,比如复发性扁桃体炎,扁桃体结石或打鼾(9名患者)。在扁桃体切除术前,对所有20例患者的扁桃体表面用拭子进行了有氧培养。挤压的碎屑和摘除扁桃体的组织样本,分别为左右扁桃体,需氧和厌氧孵育。还评估了去除的扁桃体的组织样品的微生物组组成。根据深层样品的培养结果,金黄色葡萄球菌是主要的病原体,除了大量的厌氧性和兼性厌氧性细菌存在于口腔微生物群中的那些由于远处局灶性疾病而接受扁桃体切除术的患者。核心组织样本的微生物组研究显示,两组患者的属和种水平存在很大差异,金黄色葡萄球菌和黑质Prevotella在其中的比例较高,由于远处的局灶性疾病而切除了扁桃体。我们的结果可能支持先前关于金黄色葡萄球菌和Nigorescens导致远处局灶性疾病的可能触发作用的发现。与仅需氧培养的表面样品相比,通过挤压扁桃体采集的样品可以提供有关可能的致病/触发细菌的更多信息。
    The aim of this prospective pilot study was to compare culture and microbiome results of the removed tonsils of patients with assumed distant focal disease (11 patients) and those who underwent a tonsillectomy, due to other reasons, such as recurrent tonsillitis, tonsil stones or snoring (nine patients). Aerobic culture was carried out for samples taken from the surface of the tonsils by swabs before tonsillectomy for all 20 patients. The squeezed detritus and the tissue samples of removed tonsils, taken separately for the right and left tonsils, were incubated aerobically and anaerobically. The microbiome composition of tissue samples of removed tonsils was also evaluated. Based on the culture results of the deep samples Staphylococcus aureus was the dominating pathogen, besides a great variety of anaerobic and facultative anaerobic bacteria present in the oral microbiota in those patients who underwent tonsillectomy due to distant focal diseases. Microbiome study of the core tissue samples showed a great diversity on genus and species level among patients of the two groups however, S. aureus and Prevotella nigrescens were present in higher proportion in those, whose tonsils were removed due to distant focal diseases. Our results may support previous findings about the possible triggering role of S. aureus and P. nigrescens leading to distant focal diseases. Samples taken by squeezing the tonsils could give more information about the possible pathogenic/triggering bacteria than the surface samples cultured only aerobically.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大蒜,特别是它的挥发性精油,被广泛认可的药用特性。我们已经评估了印度大蒜精油(GEO)的抗菌和抗生物膜活性及其生物活性成分的功效。富含烯丙基硫的化合物被确定为GEO中的主要植物化学物质,占总挥发油的96.51%,其中38%的二烯丙基三硫化物(DTS)含量最高。GEO对11种细菌表现出显著的抗菌活性,包括三种最低抑制浓度(MIC)为78至1250µg/mL的耐药菌株。在细菌生长动力学测定中,GEO在其1/2MIC下有效地抑制所有测试菌株的生长。对两种重要的人类病原体具有明显的抗生物膜活性,金黄色葡萄球菌和铜绿假单胞菌。机制研究表明,GEO破坏细菌细胞膜,导致核酸的释放,蛋白质,和活性氧。此外,GEO在IC50为31.18mg/mL时表现出有效的抗氧化活性,虽然它是孤立的成分,二烯丙基二硫化物(DDS)和二烯丙基三硫化物(DTS),显示有效的抗菌活性范围分别为125至500µg/mL和250-1000µg/mL。总的来说,GEO显示出对肠道细菌的有希望的抗菌和抗生物膜活性,表明其在食品工业中的潜在应用。
    Garlic (Allium sativum L.), particularly its volatile essential oil, is widely recognized for medicinal properties. We have evaluated the efficacy of Indian Garlic Essential Oil (GEO) for antimicrobial and antibiofilm activity and its bioactive constituents. Allyl sulfur-rich compounds were identified as predominant phytochemicals in GEO, constituting 96.51% of total volatile oils, with 38% Diallyl trisulphide (DTS) as most abundant. GEO exhibited significant antibacterial activity against eleven bacteria, including three drug-resistant strains with minimum inhibitory concentrations (MICs) ranging from 78 to 1250 µg/mL. In bacterial growth kinetic assay GEO effectively inhibited growth of all tested strains at its ½ MIC. Antibiofilm activity was evident against two important human pathogens, S. aureus and P. aeruginosa. Mechanistic studies demonstrated that GEO disrupts bacterial cell membranes, leading to the release of nucleic acids, proteins, and reactive oxygen species. Additionally, GEO demonstrated potent antioxidant activity at IC50 31.18 mg/mL, while its isolated constituents, Diallyl disulphide (DDS) and Diallyl trisulphide (DTS), showed effective antibacterial activity ranging from 125 to 500 µg/mL and 250-1000 µg/mL respectively. Overall, GEO displayed promising antimicrobial and antibiofilm activity against enteric bacteria, suggesting its potential application in the food industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:石榴皮废料是热敏总水解单宁(THT)的宝贵储库,在食品和药品中具有潜在的应用。由于提取后的降解,保存THT具有挑战性。我们探索离子凝胶化作为优化THT利用的封装方法。
    结果:通过外部凝胶化,我们使用Box-Behnken设计优化了过程变量。在40gkg-1海藻酸钠下,25gkg-1氯化钙,和300克kg-1石榴皮提取物(PPE),我们实现了83.65%的封装效率。与喷雾干燥相比,外部凝胶化表现出优越的性能,具有增强的释放百分比和稳定性。Physical,植物化学,和胶囊的释放曲线进行了广泛的分析。外部凝胶在30分钟内达到87.5%的释放,优于喷雾干燥的对应物(25分钟内69.7%)。封装的PPE在婴儿配方奶粉中对金黄色葡萄球菌(ATCC25923)表现出强大的抗菌活性,具有32±0.01mm的抑制区和300μgmL-1的最小抑制浓度。对金黄色葡萄球菌生长曲线的见解强调了通过膜电位改变的作用机制。所进行的研究的结果还表明,包封的PPE提取物对目标生物体的抗菌活性与通常用于杀死食物中的微生物的合成抗生素所表现出的抗菌活性相同。因此,从调查结果来看,可以得出结论,当与使用喷雾干燥技术生产的包封物相比时,在优化条件下使用外部凝胶化技术生产的PPE包封物显示出具有强抗微生物活性的优异的储存稳定性。
    结论:外部凝胶化是开发富含天然抗微生物剂或抗生素的有效胶囊的有效技术。这种方法有望在食品中应用,制药,和营养食品,增强稳定性和功效,同时减少对合成抗生素的依赖。©2024化学工业学会。
    BACKGROUND: Pomegranate peel waste is a valuable reservoir of heat-sensitive total hydrolysable tannins (THT), with potential applications in food and pharmaceuticals. Preserving THT is challenging due to degradation post-extraction. We explore ionic gelation as an encapsulation method to optimize THT utilization.
    RESULTS: Through external gelation, we optimized the process variables using Box-Behnken design. At 40 g kg-1 sodium alginate, 25 g kg-1 calcium chloride, and 300 g kg-1 pomegranate peel extract (PPE), we achieved an 83.65% encapsulation efficiency. Compared to spray drying, external gelation demonstrated superior performance, with enhanced release percentages and stability. Physical, phytochemical, and release profiles of encapsulates were extensively analysed. External gelation achieved an 87.5% release in 30 min, outperforming spray-dried counterparts (69.7% in 25 min). Encapsulated PPE exhibited robust antibacterial activity against Staphylococcus aureus (ATCC 25923) in powdered infant formula, with a 32 ± 0.01 mm zone of inhibition and 300 μg mL-1 minimum inhibitory concentration. Insights into S. aureus growth curves underlined the mechanism of action via membrane potential alterations. The results of carried investigations also showed that the antibacterial activity of the encapsulated PPE extracts against the targeted organism was identical to the antibacterial activity exhibited by synthetic antibiotics used generally to kill microorganisms in food. Therefore, from the findings, it can be concluded that the PPE encapsulate produced using the external gelation technique at the optimized condition displayed superior storage stability possessing strong antimicrobial activity when compared to encapsulate produced using the spray drying technique.
    CONCLUSIONS: External gelation emerges as a potent technique for developing effective encapsulates enriched with natural antimicrobials or antibiotics. This approach holds promise for applications in food, pharmaceuticals, and nutraceuticals, enhancing stability and efficacy while reducing reliance on synthetic antibiotics. © 2024 Society of Chemical Industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号