crop improvement

作物改良
  • 文章类型: Journal Article
    基因组编辑是一种有前途的技术,已广泛用于基本基因功能研究和性状改善。同时,计算能力和大数据的指数增长促进了机器学习在生物学研究中的应用。在这方面,机器学习在基因组编辑系统的完善和作物改良方面显示出巨大的潜力。这里,我们回顾了机器学习在基因组编辑优化方面的进展,重点放在编辑效率和特异性增强上。此外,我们展示了机器学习如何连接基因组编辑和作物育种,通过准确的关键位点检测和指导RNA设计。最后,我们讨论了这两种技术在作物改良中的当前挑战和前景。通过将先进的基因组编辑技术与机器学习相结合,未来作物育种的进展将进一步加快。
    Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究使用16SrRNA基因测序提供了黄麻内生和根际细菌的序列数据集。首先对植物样品进行表面灭菌,并使用Quick-DNA™真菌/细菌Miniprep试剂盒从土壤和黄麻根和茎中提取细菌的DNA。扩增纯化的DNA并使用正向和反向引物进行聚合酶链式反应。PCR产物在应用生物系统ABI3500XL遗传分析仪(应用生物系统,ThermoFisherScientific)。使用BioEdit版本7.2.5然后在NCBI上BLAST分析序列。可识别的细菌包括根瘤菌,水果柠檬酸杆菌RZS23(登录号:CP024673.1),内生细菌,蜡状芽孢杆菌EDR23(登录号:LN890242.1),和MorganellamorganiiEDS23(登录号:KR094121.1)。这些细菌表现出的植物生长促进特性表明了它们作为生物接种剂的未来探索。
    This study provides sequence datasets of endophytic and rhizobacteria of jute using 16S rRNA gene sequencing. The plant samples were first surface sterilized and DNA of the bacteria from soil and jute roots and stem was extracted using Quick-DNA™ Fungal/Bacterial Miniprep Kit. The purified DNA was amplified and subjected to polymerase chain reaction using forward and reverse primers. The PCR products were sequenced on Applied Biosystems ABI 3500XL Genetic Analyser (Applied Biosystems, ThermoFisher Scientific). The sequences were analyzed using BioEdit version 7.2.5 and then BLAST on NCBI. The identifiable bacteria include the rhizobacteria, Citrobacter fruendii RZS23 (accession number: CP024673.1), endophytic bacteria, Bacillus cereus EDR23 (accession number: LN890242.1), and Morganella morganii EDS23 (accession number: KR094121.1). The plant growth-promoting traits exhibited by these bacteria suggest their future exploration as bioinoculants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    14-3-3蛋白质,普遍存在于真核细胞中,是参与大量细胞过程的调节蛋白。在植物中,它们已经在新陈代谢的背景下进行了研究,发展,和应激反应。最近的研究强调了14-3-3蛋白在调节植物免疫中的关键作用。14-3-3蛋白调节免疫反应的能力主要归因于它们作为相互作用中心的功能。介导蛋白质-蛋白质相互作用,从而调节其结合伴侣的活性和整体功能。这里,我们揭示了14-3-3蛋白质如何促进植物防御机制,它们与植物免疫级联成分相互作用的含义,以及将这些知识用于作物改良策略的潜力。
    14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结论:这篇综合综述强调了基因组编辑在植物生殖生物学中的应用,包括与之相关的最新进展和挑战。基因组编辑(GE)是一项强大的技术,有可能通过实现高效,加速作物改良。精确,和植物基因组的快速工程。在过去的十年里,这项技术已经从使用大范围核酸酶(归巢核酸内切酶)迅速发展起来,锌指核酸酶,转录激活因子样效应核酸酶使用成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白(CRISPR/Cas),它在最近一段时间已经成为一种流行的GE工具,并已被广泛用于几种生物,包括植物。GE已成功用于几种作物,以改善植物的繁殖特性。改善作物的繁殖特性对于作物产量和确保世界粮食供应至关重要。在这次审查中,我们讨论了GE在植物生殖生物学各个方面的应用,包括其在单倍体诱导中的潜在应用,无融合生殖,单性结实,雄性不育系的发展,和自我不相容性的调节。我们还讨论了该技术用于作物改良的当前挑战和未来前景,专注于植物繁殖。
    CONCLUSIONS: This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world\'s food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作物育种需要开发和选择具有改善的农艺性状的植物品种。现代分子技术,比如基因组编辑,通过改变特定调节或功能基因的表达,能够更有效地操纵植物表型。因此,彻底理解支持这些特征的转录调控机制是至关重要的。在多元组学时代,已经为不同的作物物种生成了大量的组学数据,包括基因组学,表观基因组学,转录组学,蛋白质组学,和单细胞组学。丰富的数据资源和先进的计算工具的出现提供了前所未有的机会,可以获得与理想特征相关的监管过程的整体观点和深刻理解。这篇综述的重点是利用多组数据来研究基因表达调控的集成网络方法。讨论了各种类型的监管网络及其推断方法,专注于作物植物的最新进展。多组数据的整合已被证明对于构建高置信度监管网络至关重要。随着这些方法的完善,它们将大大加强作物育种工作,并为全球粮食安全做出贡献。
    Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞穿透肽(CPPs)短(通常为5-30个氨基酸),阳离子,两亲性,或疏水性肽,其促进真核细胞通过跨质膜的直接易位或内吞作用对多种货物分子的细胞摄取。CPPs可以运送多种生物活性货物,包括蛋白质,肽,核酸,和小分子进入细胞。一旦进去,递送的货物可能在细胞质中起作用,核,或其他亚细胞区室。许多CPP已用于哺乳动物系统中的研究和药物递送。尽管CPPs在植物研究和农业中具有许多潜在用途,CPPs在植物中的应用仍然有限。在这里,我们回顾了CPP的结构和机制,并强调了它们在可持续农业中的潜在应用。
    Cell-penetrating peptides (CPPs) are short (typically 5-30 amino acids), cationic, amphipathic, or hydrophobic peptides that facilitate the cellular uptake of diverse cargo molecules by eukaryotic cells via direct translocation or endocytosis across the plasma membrane. CPPs can deliver a variety of bioactive cargos, including proteins, peptides, nucleic acids, and small molecules into the cell. Once inside, the delivered cargo may function in the cytosol, nucleus, or other subcellular compartments. Numerous CPPs have been used for studies and drug delivery in mammalian systems. Although CPPs have many potential uses in plant research and agriculture, the application of CPPs in plants remains limited. Here we review the structures and mechanisms of CPPs and highlight their potential applications for sustainable agriculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着气候变化和全球人口不断增长,对粮食作物生产能力的需求不断增加,农业和作物研究的技术进步将仍然是必要的。尽管在过去的一个世纪中,作物改良的巨大进步促进了产量的大量增加,传统的育种计划缺乏满足未来需求所需的遗传增益率。在过去的十年里,已经开发了新的育种技术和工具来帮助作物改良。一个这样的进步是使用速度育种。速度育种被称为显着减少作物世代之间时间的方法的应用,从而简化育种和研究工作。这些快速一代的进步策略有助于加快作物改良努力的步伐,以维持粮食安全和满足粮食,饲料,以及世界上不断增长的人口对纤维的需求。速度育种可以通过各种技术来实现,包括环境优化,基因组选择,CRISPR-Cas9技术,和表观基因组学工具。这篇综述旨在讨论作物育种技术和技术的这些重大进展,这些技术和技术有可能大大提高植物育种者快速生产重要品种的能力。
    As climate changes and a growing global population continue to escalate the need for greater production capabilities of food crops, technological advances in agricultural and crop research will remain a necessity. While great advances in crop improvement over the past century have contributed to massive increases in yield, classic breeding schemes lack the rate of genetic gain needed to meet future demands. In the past decade, new breeding techniques and tools have been developed to aid in crop improvement. One such advancement is the use of speed breeding. Speed breeding is known as the application of methods that significantly reduce the time between crop generations, thereby streamlining breeding and research efforts. These rapid-generation advancement tactics help to accelerate the pace of crop improvement efforts to sustain food security and meet the food, feed, and fiber demands of the world\'s growing population. Speed breeding may be achieved through a variety of techniques, including environmental optimization, genomic selection, CRISPR-Cas9 technology, and epigenomic tools. This review aims to discuss these prominent advances in crop breeding technologies and techniques that have the potential to greatly improve plant breeders\' ability to rapidly produce vital cultivars.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物进化了,数百万年来,针对病原体的复杂防御系统。一旦被感染,病原体效应分子和宿主受体之间的相互作用引发植物免疫反应,其中包括细胞凋亡,全身免疫反应,在其他人中。负责病原体效应子识别的重要蛋白质家族是富含核苷酸结合位点-亮氨酸重复序列(NBS-LRR)的蛋白质。NBS-LRR基因家族是植物中最年夜的抗病基因类。这些蛋白质广泛分布在维管植物中,并且在植物基因组中具有复杂的多基因簇分布。为了抵消如此大的基因家族对健身成本的遗传负荷,植物进化出一种利用小RNA诱导的转录后基因沉默的机制,特别是microRNA。对于NBS-LRR基因家族,参与这种沉默机制的小RNA主要是microRNA482/2118超家族。这种抑制机制在病原体感染时得到缓解,从而允许增加NBS-LRR表达并触发植物免疫。在这次审查中,我们将讨论参与这种沉默机制的microRNAs和次级RNAs的生物发生,NBS-LRR蛋白响应病原体效应子的生化和结构特征以及基于microRNA的沉默机制的进化,重点是miR482/2118家族。此外,microRNA表达的生物技术操作,将讨论使用转基因或基因组编辑方法来改善栽培植物,重点研究了大豆中的miR482/2118家族。
    Plants evolved, over millions of years, complex defense systems against pathogens. Once infected, the interaction between pathogen effector molecules and host receptors triggers plant immune responses, which include apoptosis, systemic immune response, among others. An important protein family responsible for pathogen effector recognition is the nucleotide binding site-leucine repeat rich (NBS-LRR) proteins. The NBS-LRR gene family is the largest disease resistance gene class in plants. These proteins are widely distributed in vascular plants and have a complex multigenic cluster distribution in plant genomes. To counteract the genetic load of such a large gene family on fitness cost, plants evolved a mechanism using post transcriptional gene silencing induced by small RNAs, particularly microRNAs. For the NBS-LRR gene family, the small RNAs involved in this silencing mechanism are mainly the microRNA482/2118 superfamily. This suppression mechanism is relieved upon pathogen infection, thus allowing increased NBS-LRR expression and triggering plant immunity. In this review, we will discuss the biogenesis of microRNAs and secondary RNAs involved in this silencing mechanism, biochemical and structural features of NBS-LRR proteins in response to pathogen effectors and the evolution of microRNA-based silencing mechanism with a focus on the miR482/2118 family. Furthermore, the biotechnological manipulation of microRNA expression, using both transgenic or genome editing approaches to improve cultivated plants will be discussed, with a focus on the miR482/2118 family in soybean.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    根际含有对植物生长必需的营养物质和潜在的有害物质。植物,作为固着生物,必须有效地吸收必要的营养,同时积极避免摄取有毒化合物。类金属,这些元素表现出金属和非金属的特性,会对植物生长产生不同的影响,从必不可少和有益到有毒。植物中类金属的毒性是由于暴露剂量或特定元素类型引起的。利用或解毒这些元素,植物已经开发出各种转运蛋白来调节它们在植物中的吸收和分布。可以说,基因组序列分析表明在整个植物界都存在这样的转运蛋白家族,从绿藻植物到高等植物。这些运输者形成了具有相关运输偏好的定义家庭。这些家族中的同种型已经进化出具有由确定的选择性调节的专门功能。因此,了解运输者的化学原子细节对于实现作物改良所需的遗传修饰很重要。这里,我们概述了植物运输系统中处理类金属的各种适应,包括它们的摄取,分布,排毒,和植物组织的稳态。与其他营养素转运系统的结构相似,以支持转运蛋白活性位点功能多样性的新兴主题,阐明植物对利用和挤出准金属浓度的适应。考虑到观察到的类金属的生理重要性,这篇综述旨在强调类金属运输系统及其相应营养素转运蛋白的共同和不同特征。
    The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, which are elements that exhibit properties of both metals and nonmetals, can have different effects on plant growth, ranging from being essential and beneficial to being toxic. The toxicity of metalloids in plants arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters that regulate their uptake and distribution in plants. Arguably, genomic sequence analysis suggests the presence of such transporter families throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding transporters\' chemistry to atomic detail is important to achieve desired genetic modifications for crop improvement. Here, we outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating adaptations of plants to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review intends to highlight the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对全球粮食生产日益增长的需求可能是未来50年人类面临的一个决定性问题。为了应对这一挑战,人们希望对具有更高光合效率的作物进行生物工程改造,以提高产量。最近,人们对设计具有较高叶肉电导(gm)的叶片越来越感兴趣,这将使CO2更有效地从气孔下腔移动到叶绿体基质。然而,如果要通过这种方法实现作物产量的提高,必须充分认识到与估计gm相关的方法局限性。在这次审查中,我们总结了这些限制,并概述可能影响GM最终估计的不确定性和假设。此外,我们严格评估了预测的定量影响,提高gm将对作物物种的同化率。我们强调需要进行更多的理论建模,以确定改变转基因是否是真正提高作物性能的可行途径。最后,我们提出了指导未来转基因研究的建议,这将有助于减轻与估计此参数固有的不确定性。
    The growing demand for global food production is likely to be a defining issue facing humanity over the next 50 years. To tackle this challenge, there is a desire to bioengineer crops with higher photosynthetic efficiencies, to increase yields. Recently, there has been a growing interest in engineering leaves with higher mesophyll conductance (gm), which would allow CO2 to move more efficiently from the substomatal cavities to the chloroplast stroma. However, if crop yield gains are to be realised through this approach, it is essential that the methodological limitations associated with estimating gm are fully appreciated. In this review, we summarise these limitations, and outline the uncertainties and assumptions that can affect the final estimation of gm. Furthermore, we critically assess the predicted quantitative effect that elevating gm will have on assimilation rates in crop species. We highlight the need for more theoretical modelling to determine whether altering gm is truly a viable route to improve crop performance. Finally, we offer suggestions to guide future research on gm, which will help mitigate the uncertainty inherently associated with estimating this parameter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号