crop improvement

作物改良
  • 文章类型: Journal Article
    基因组编辑是一种有前途的技术,已广泛用于基本基因功能研究和性状改善。同时,计算能力和大数据的指数增长促进了机器学习在生物学研究中的应用。在这方面,机器学习在基因组编辑系统的完善和作物改良方面显示出巨大的潜力。这里,我们回顾了机器学习在基因组编辑优化方面的进展,重点放在编辑效率和特异性增强上。此外,我们展示了机器学习如何连接基因组编辑和作物育种,通过准确的关键位点检测和指导RNA设计。最后,我们讨论了这两种技术在作物改良中的当前挑战和前景。通过将先进的基因组编辑技术与机器学习相结合,未来作物育种的进展将进一步加快。
    Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作物育种需要开发和选择具有改善的农艺性状的植物品种。现代分子技术,比如基因组编辑,通过改变特定调节或功能基因的表达,能够更有效地操纵植物表型。因此,彻底理解支持这些特征的转录调控机制是至关重要的。在多元组学时代,已经为不同的作物物种生成了大量的组学数据,包括基因组学,表观基因组学,转录组学,蛋白质组学,和单细胞组学。丰富的数据资源和先进的计算工具的出现提供了前所未有的机会,可以获得与理想特征相关的监管过程的整体观点和深刻理解。这篇综述的重点是利用多组数据来研究基因表达调控的集成网络方法。讨论了各种类型的监管网络及其推断方法,专注于作物植物的最新进展。多组数据的整合已被证明对于构建高置信度监管网络至关重要。随着这些方法的完善,它们将大大加强作物育种工作,并为全球粮食安全做出贡献。
    Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病原体引起的植物病害导致作物产量和质量逐年显著下降,极大地威胁着全世界的粮食生产和安全。抗病品种的创建和栽培是控制植物病害的最有效策略之一。广谱抗性(BSR)是育种者高度优选的,因为它赋予植物对多种病原体物种或一种物种的多个种族或品系的抗性。最近,越来越多的证据表明,2-酮戊二酸(2OG)依赖性加氧酶(2OGD)是植物抗病性的重要调节因子。的确,2OGD催化大量的氧化反应,参与主要植物激素和各种次生代谢物的植物专门代谢或生物合成。此外,几个2OGD基因被表征为植物防御反应的负调节因子,通过基因组编辑工具对这些基因的破坏导致作物中针对病原体的BSR增强。这里,综述了植物中与防御相关的2OGD基因的分离和鉴定及其在作物改良中的研究进展。此外,讨论了利用2OGD基因作为工程化BSR作物靶标的策略。
    Plant diseases caused by pathogens result in a marked decrease in crop yield and quality annually, greatly threatening food production and security worldwide. The creation and cultivation of disease-resistant cultivars is one of the most effective strategies to control plant diseases. Broad-spectrum resistance (BSR) is highly preferred by breeders because it confers plant resistance to diverse pathogen species or to multiple races or strains of one species. Recently, accumulating evidence has revealed the roles of 2-oxoglutarate (2OG)-dependent oxygenases (2OGDs) as essential regulators of plant disease resistance. Indeed, 2OGDs catalyze a large number of oxidative reactions, participating in the plant-specialized metabolism or biosynthesis of the major phytohormones and various secondary metabolites. Moreover, several 2OGD genes are characterized as negative regulators of plant defense responses, and the disruption of these genes via genome editing tools leads to enhanced BSR against pathogens in crops. Here, the recent advances in the isolation and identification of defense-related 2OGD genes in plants and their exploitation in crop improvement are comprehensively reviewed. Also, the strategies for the utilization of 2OGD genes as targets for engineering BSR crops are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的十年里,N6-甲基腺苷(m6A)已成为转录组普遍且动态调节的修饰;它已被可逆地安装,已移除,并由特异性结合蛋白解释,并在分子和生物过程中发挥了关键作用。在这个范围内,我们巩固了植物M6A基因表达调控研究的最新进展,不同的生理和致病过程,以及作物试验的影响,指导讨论与论文编辑相关的挑战,并利用论文编辑来改善作物。
    Over the past decade, N 6-methyladenosine (m6A) has emerged as a prevalent and dynamically regulated modification across the transcriptome; it has been reversibly installed, removed, and interpreted by specific binding proteins, and has played crucial roles in molecular and biological processes. Within this scope, we consolidate recent advancements of m6A research in plants regarding gene expression regulation, diverse physiologic and pathogenic processes, as well as crop trial implications, to guide discussions on challenges associated with and leveraging epitranscriptome editing for crop improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:迫切需要提高农业生产以满足不断增长的全球人口的粮食需求。丰富的遗传多样性有望加速作物发育。特别是,CRISPR/Cas基因组编辑技术的发展极大地增强了我们通过直接人工基因修饰提高作物遗传多样性的能力。然而,最近的研究表明,使用CRISPR/Cas技术的大多数作物改良工作主要集中在编码区,基因表达调控区的研究相对缺乏。
    结果:这篇综述从一开始就简要概述了CRISPR/Cas系统的发展。随后,讨论了基因调控区在植物中的重要性。本文综述了通过CRISPR/Cas技术在调控区突变在作物育种中的最新进展和应用。
    结论:最后,概述了使用基因组编辑技术进行未来作物育种的观点。这篇综述为利用基因组编辑技术改良作物提供了新的研究见解。
    BACKGROUND: Enhanced agricultural production is urgently required to meet the food demands of the increasing global population. Abundant genetic diversity is expected to accelerate crop development. In particular, the development of the CRISPR/Cas genome editing technology has greatly enhanced our ability to improve crop\'s genetic diversity through direct artificial gene modification. However, recent studies have shown that most crop improvement efforts using CRISPR/Cas techniques have mainly focused on the coding regions, and there is a relatively lack of studies on the regulatory regions of gene expression.
    RESULTS: This review briefly summarizes the development of CRISPR/Cas system in the beginning. Subsequently, the importance of gene regulatory regions in plants is discussed. The review focuses on recent developments and applications of mutations in regulatory regions via CRISPR/Cas techniques in crop breeding.
    CONCLUSIONS: Finally, an outline of perspectives for future crop breeding using genome editing technologies is provided. This review provides new research insights for crop improvement using genome editing techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物色素(phy)分布在各种植物器官中,它们的生理效应会影响植物的萌发,开花,结果,和衰老,以及在整个植物生命周期中调节形态发生。活性氧(ROS)是植物对环境刺激的系统反应的关键调节因子。与植物色素有吸引力的调节关系。随着高通量测序技术的发展,组学技术已经成为强大的工具,研究人员已经使用组学技术来促进大数据革命。为了深入分析植物色素介导的信号通路,整合的多组学(转录组学,蛋白质组学,和代谢组学)方法可能会从全球角度提供答案。本文全面阐述了多组学技术在植物色素研究中的应用。我们描述了转录组的研究现状和未来方向-,proteome-,以及当细胞受到各种刺激时由植物色素介导的代谢组相关网络成分。我们强调了多组学技术在探索植物色素对细胞的影响及其分子机制方面的重要性。此外,为今后作物改良提供了方法和思路。
    Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分生组织是产生所有植物器官的含有干细胞的结构,因此是作物改良的重要目标。发育调节剂控制分生组织内细胞分裂的平衡和速率。改变这些调节器会影响分生组织架构,因此,植物形式。在这次审查中,我们讨论了参与调节茎尖分生组织(SAM)的基因,花序分生组织(IM),腋窝分生组织(AM),根尖分生组织(RAM),和植物中的维管形成层。我们还重点介绍了作物育种者如何操纵发育调节剂来改变分生组织生长的例子,改变作物性状包括花序大小和分枝模式。植物转化技术是与植物分生组织研究相关的另一项创新,因为它们使作物基因组工程成为可能。我们讨论了通过研究控制分生组织发育的基因而成为可能的植物转化研究的最新进展。最后,最后,我们讨论了分生组织研究如何在未来几十年为作物改良做出贡献。
    Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小肽代表植物蛋白质组中暗物质的子集。通过差异表达模式和行动模式,小肽是植物生长发育的重要调节因子。在过去的20年里,由于基因组测序的技术进步,许多小肽已经被鉴定出来,生物信息学,和化学生物学。在这篇文章中,我们总结了植物小肽的分类和用于鉴定它们的实验策略,以及它们在农艺育种中的潜在用途。本文综述了小肽在植物中的生物学功能和分子机制。讨论了小肽研究中存在的问题,并强调了该领域未来的研究方向。我们的综述为植物中的小肽提供了重要的见解,并将有助于更好地了解它们在生物技术和农业中的潜在作用。
    Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物衰老是植物发育的最后阶段,是细胞程序性死亡的一种,发生在可预测的时间和细胞。它涉及从营养同化到营养再动员的功能转换,严重影响植物结构和植物生物量,作物质量,和园艺观赏性状。在过去的二十年里,DNA损伤被认为是细胞衰老的主要原因。越来越多的证据表明,表观遗传信息的改变是生物体细胞衰老的一个促成因素。在这次审查中,综述了植物细胞衰老的表观遗传和表观遗传机制的研究进展,在DNA甲基化的调控水平,组蛋白甲基化和乙酰化,染色质重塑,非编码RNA和RNA甲基化。此外,我们讨论了它们的分子遗传操作及其在农业作物改良中的潜在应用。最后指出了未来研究方向的展望。
    Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号