Secondary Metabolism

次级代谢
  • 文章类型: Journal Article
    从史前时代开始,药用和芳香植物(MAP)已被用于各种治疗目的,由于其各种药物相关的生物活性化合物,即次级代谢产物。然而,当次级代谢物直接从MAP中分离时,有时,特定组织和某些发育阶段的次生代谢产物的产量非常差,合成有限。此外,许多MAPs物种面临灭绝的危险,尤其是那些用于制药的,由于对植物性草药的过度需求,他们的自然种群承受着过度收获的压力。这些代谢物在许多工业和制药行业中的广泛使用促使人们呼吁进行更多研究,以通过使用植物组织培养技术优化大规模生产来提高产量。植物细胞作为次生代谢产物来源的潜力可通过结合产品回收技术研究,靶向代谢物的生产,和体外培养的建立。植物组织培养方法提供了低成本,可持续,连续,和不受地理或气候因素影响的可行次级代谢产物生产。这项研究涵盖了药物相关代谢物诱导的最新进展,以及通过先进的组织培养技术保护和繁殖植物。
    Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物NAT酶,使用酰基辅酶A酰化芳族胺和肼,已经对它们在外源性生物代谢中的作用进行了充分的研究。一些同源物也与次级代谢有关,但是NAT酶的这种功能并不为人所知。对于这项比较研究,我们调查了测序的微生物基因组,以更新正式注释的NAT基因列表,添加4000多个新序列(主要是细菌,而且还有古细菌,真菌和原生生物),并描绘了微生物宇宙中NAT的广泛但非普遍分布。NAT序列在微生物基因簇中的定位并不是一个罕见的发现,并且这种关联在涉及次级代谢的所有主要类型的生物合成基因簇(BGC)中都很明显。对具有NAT基因的实验特征簇的MIBIG数据库的询问进一步支持次级代谢必须是微生物NAT酶的主要功能,并且不应该被该领域的研究人员忽视。我们还表明NAT序列可以与可能参与水平基因转移的细菌质粒相关联。合并,我们的计算预测和MIBIG文献发现揭示了微生物NAT基因的非凡功能多样化,促使进一步研究它们在预测的功能尚未表征的BGC中的作用。
    Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    次级代谢产物,活生物体产生的生物活性化合物,可以揭示自然界中的共生关系。在这项研究中,从含有次生代谢产物的溶剂上清液中提取与共生细菌(Xenorhabdusstockiae和Photorhabdusluminescens)相关的土传昆虫病原线虫,证明了对大肠杆菌的显著抑制作用,金黄色葡萄球菌,B.subtilus,P.奇迹,E.粪便,还有P.Stutzeri.通过傅立叶变换红外光谱对这些次生代谢物的表征揭示了蛋白质的胺基,多酚的羟基和羧基,多糖的羟基,和有机酸的羧基。此外,通过高效液相色谱法分析获得的粗提物,以基本鉴定潜在的生物活性肽。气相色谱-质谱分析来自Xenorhabdusstoriae的乙酸乙酯提取物确定了主要化合物,包括壬酸衍生物,脯氨酸,巴霉素,八癸醛衍生物,三氧杂-5-氮杂-1-硅双环,4-十八进制,甲酯,油酸,和1,2-苯二羧酸。从发光光纹素中进行额外的提取,产生了功能化合物,例如吲哚-3-乙酸,邻苯二甲酸,1-十四醇,奈莫索诺,1-二十烷醇,和不饱和脂肪酸。这些发现支持用于未来病原体抑制的新型天然抗微生物剂的潜在开发。
    Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甜叶菊(甜叶菊)是菊科中的一种植物,含有几种生物活性化合物,包括抗糖尿病二萜苷(例如甜菊苷,莱鲍迪甙和杜克甙)可以作为零卡路里糖的替代品。在这项研究中,使用5%聚乙二醇(PEG)应用启发策略,氯化钠(NaCl;50和100mM)和赤霉酸(2.0和4.0mg/LGA3),以研究它们对芽形态发生的影响,和酚类物质的生产,黄酮类化合物,总可溶性糖,脯氨酸和甜菊糖,以及抗氧化活性,在S.rebaudiana的射击文化中。随此,添加2mg/L和4mg/LGA3的培养基表现出最高的射击反应(87%和80%)。较低浓度的GA3(2mg/L)与6-苄基氨基嘌呤(BAP)的组合增加导致最大平均芽长度(11.1cm)。向培养基中添加100mMNaCl盐导致观察到的最高总酚含量(TPC;4.11mg/g-DW,与对照0.52mg/g-DW相比)。培养的芽中总黄酮含量(TFC;1.26mg/g-DW)和多酚浓度(5.39mg/g-DW)。然而,在用50mMNaCl处理的培养基中生长的芽中观察到最大的抗氧化活性(81.8%)。与对照(0.37μg/mL)相比,施用2mg/L的GA3导致脯氨酸的最高积累(0.99μg/mL)。在补充有100mMNaCl和5%PEG的培养物中观察到最大甜菊糖苷含量(71µL/mL),然后是4mg/LGA3处理(70µL/mL),与对照(60µL/mL)相比。GA3与甜菊苷含量呈正相关。值得注意的是,这两种化合物来自共同的生化途径。这些结果表明,激发是增强甜菊糖苷和其他代谢物积累的有效选择,并为使用生物反应器的未来工业规模生产提供了基础。
    Stevia rebaudiana (stevia) is a plant in the Asteraceae that contains several biologically active compounds including the antidiabetic diterpene glycosides (e.g. stevioside, rebaudioside and dulcoside) that can serve as zero-calorie sugar alternatives. In this study, an elicitation strategy was applied using 5% polyethylene glycol (PEG), sodium chloride (NaCl; 50 and 100 mM) and gibberellic acid (2.0 and 4.0 mg/L GA3) to investigate their effect on shoot morphogenesis, and the production of phenolics, flavonoids, total soluble sugars, proline and stevioside, as well as antioxidant activity, in shoot cultures of S. rebaudiana. Herewith, the media supplemented with 2 mg/L and 4 mg/L GA3 exhibited the highest shooting response (87% and 80%). The augmentation of lower concentrations of GA3 (2 mg/L) in combination with 6-benzylaminopurine (BAP) resulted in the maximum mean shoot length (11.1 cm). The addition of 100 mM NaCl salts to the media led to the highest observed total phenolics content (TPC; 4.11 mg/g-DW compared to the control 0.52 mg/g-DW), total flavonoids content (TFC; 1.26 mg/g-DW) and polyphenolics concentration (5.39 mg/g-DW) in shoots cultured. However, the maximum antioxidant activity (81.8%) was observed in shoots raised in media treated with 50 mM NaCl. The application of 2 mg/L of GA3 resulted in the highest accumulation of proline (0.99 μg/mL) as compared to controls (0.37 μg/mL). Maximum stevioside content (71 µL/mL) was observed in cultures supplemented with 100 mM NaCl and 5% PEG, followed by the 4 mg/L GA3 treatment (70 µL/mL) as compared to control (60 µL/mL). Positive correlation was observed between GA3 and stevioside content. Notably, these two compounds are derived from a shared biochemical pathway. These results suggest that elicitation is an effective option to enhance the accumulation of steviosides and other metabolites and provides the groundwork for future industrial scale production using bioreactors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    深海环境,作为地球生物圈内相对未探索的极端,表现出与陆地栖息地的显著区别。为了在这些极端条件下茁壮成长,深海放线菌已经进化出独特的生化代谢和生理能力,以确保它们在这个生态位生存。在这项研究中,通过培养依赖性方法和16SrRNA测序方法,从马里亚纳海沟中分离并鉴定了5个放线菌菌株。微杆菌属的抗菌活性。B1075被发现是最有效的,因此,它被选为目标菌株。通过全球天然产品社会分子网络(GNPS)平台进行的分子网络分析确定了25种类黄酮化合物为类黄酮次生代谢产物。其中,金雀异黄素被纯化并鉴定为具有显著抗菌活性的生物活性化合物。基于全基因组测序数据,在菌株B1075中提出了金雀异黄素的完整合成途径,关键基因是CHS(编码查尔酮合成酶)。CHS基因的表达受到高静水压力的显著调控,从而影响菌株B1075中类黄酮化合物的产生,揭示了放线菌合成类黄酮次生代谢产物与其在分子水平上适应高压环境之间的关系。这些结果不仅扩大了我们对深海微生物的理解,而且有望为生物制药领域新型药物的开发提供有价值的见解。
    Deep-sea environments, as relatively unexplored extremes within the Earth\'s biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes\' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一种海洋真菌菌株,曲霉属。ITBBc1是从海南省南中国海收集的珊瑚中分离出来的。对该菌株的发酵提取物进行了深入的化学研究,提供了四种新的次级代谢产物(1-4),命名为甲磺酸甲-C和异戊烯基对苯苷H,连同四个已知的化合物(5-8)。通过广泛的光谱分析(包括一维和二维(1D和2D)NMR光谱和高分辨率电喷雾电离质谱(HR-ESI-MS))阐明了它们的结构。采用改进的Mosher方法来确定新化合物的绝对构型。植物毒性试验表明,化合物6-8对小麦和水稻种子萌发具有明显的拮抗活性,呈剂量依赖关系。
    A marine-derived fungal strain, Aspergillus sp. ITBBc1, was isolated from coral collected from the South China Sea in Hainan province. Intensive chemical investigation of the fermentation extract of this strain afforded four new secondary metabolites (1-4), named megastigmanones A-C and prenylterphenyllin H, along with four known compounds (5-8). Their structures were elucidated by extensive spectroscopic analysis including one-and two-dimensional (1D and 2D) NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The modified Mosher\'s method was undertaken to determine the absolute configurations of new compounds. The phytotoxic activity test showed that compounds 6-8 exhibited significant antagonistic activity against the germination of Triticum aestivum L. and Oryza sativa L. seeds with a dose-dependent relationship.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    六种新化合物,talamitonesA和B(1和2),去甲基他拉米酮B(3),talamiisocoumaringlycosidesA和B(4和5),和塔拉氨基萘糖苷(6),连同六个已知的化合物(7-12),从海洋真菌TalaromycesminnesotensisBTBU20220184中分离出。新结构通过HRESIMS和NMR表征。这是来自Talaromyces属真菌的异香精糖苷衍生物的首次报道。化合物5、6和9对金黄色葡萄球菌显示出协同抗菌活性。
    Six new compounds, talamitones A and B (1 and 2), demethyltalamitone B (3), talamiisocoumaringlycosides A and B (4 and 5), and talaminaphtholglycoside (6), together with six known compounds (7-12), were isolated from the marine-derived fungus Talaromyces minnesotensis BTBU20220184. The new structures were characterized by using HRESIMS and NMR. This is the first report of isocoumaringlycoside derivatives from a fungus of the Talaromyces genus. Compounds 5, 6, and 9 showed synergistic antibacterial activity against Staphylococcus aureus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微囊藻属。以在世界各地的淡水蓝藻有害藻中产生肝毒素微囊藻毒素而闻名,威胁饮用水供应以及公众和环境健康。然而,微囊藻基因组也有许多生物合成基因簇(BGC)编码其他次级代谢产物的生物合成,包括许多具有毒性的。这些BGC中的大多数是未表征的,并且目前缺乏与生物合成产物的联系。然而,最近的实地研究表明,这些BGC中的许多在自然群落中丰富且转录活跃,表明在水华生态和水质中潜在的重要但未知的作用。这里,我们分析了从伊利湖西部分离出的21个xenic微囊藻培养物,以研究该属生物合成潜力的多样性。通过代谢基因组学和计算机模拟方法,我们表明这些微囊藻菌株含有可变的BGC,以前在自然种群中观察到的,并在不同的文化中编码不同的代谢组。此外,我们发现大多数代谢物和基因簇是没有特征的,强调我们对微囊藻的化学库的有限理解。由于在培养物中观察到复杂的代谢组,其中含有大量不同的同源物以及未知的代谢物,这些结果强调需要深入研究和鉴定微囊藻毒素以外的微囊藻毒素产生的次生代谢产物,以评估其对人类和环境健康的影响.重要微囊藻属形成密集的蓝细菌有害藻华(cyanoHAB),并能产生毒素微囊藻毒素,这对世界各地的饮用水危机负有责任。虽然微囊藻毒素非常令人担忧,微囊藻还产生大量的其他次生代谢产物,由于其潜在的毒性,这些代谢产物可能是令人感兴趣的。生态重要性,或药物应用。在这项研究中,我们结合基因组和代谢组学方法来研究负责次生代谢产物生物合成的基因,以及西湖伊利湖文化收藏的微囊藻菌株中产生的代谢产物的化学多样性。这个独特的集合包括直接从伊利湖西部分离的微囊藻菌株,每年都会发生大量的cyanoHAB事件,并对饮用水产生负面影响,旅游,和工业。
    Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,人们对研究与口服药物代谢相关的肠道微生物组来源的水解酶越来越感兴趣,特别是专注于天然产物药物。尽管天然产物药物在口服药物领域的重要性,缺乏关于肠道微生物组来源的水解酶与这些药物之间的调节相互作用的研究.本文从三个关键角度探讨了肠道微生物组来源的水解酶与天然产物药物代谢之间的相互作用。首先,它检查了糖苷水解酶的影响,酰胺水解酶,羧酸酯酶,胆汁盐水解酶,和环氧化物水解酶对天然产物结构的影响。其次,它探讨了天然产物药物如何影响微生物组衍生的水解酶。最后,它分析了水解酶和天然产物之间的相互作用对疾病发展的影响,以及开发微生物衍生酶的挑战。本综述的总体目标是为推进新型天然产物药物的研发和个性化治疗奠定坚实的理论基础。
    In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虎尾草不仅是传统的中草药,也是来源多样的功能性食品。本研究旨在区分不同种类Balanophorae的生药学特征和次生代谢产物。收获了八种虎尾草,包括21批209个样品。采用超高效液相色谱-四极杆飞行时间质谱技术分析了21种来源的Balanophorae的次生代谢产物。进行靶向代谢组学分析以比较各组之间的差异。可以通过它们的生药学特征来鉴定rhopalocnemisphalloide和B。然后,在209个样品的混合提取物中鉴定或表征了41个次生代谢物,主要是酚酸,黄酮类化合物,以及它们的衍生物。这些次生代谢物的分布显示出不同物种之间的明显差异。此外,有针对性的代谢组学分析表明,七种Balanophorae的次级代谢谱显示出明显的差异,不同生长区域之间也存在差异。最后,筛选了5个重要的代谢标志物,以成功区分拉花芽孢杆菌,B.Harlandii,和B.多andra,包括三种酚酸和两种黄酮类化合物。这是第一个系统比较不同来源的Balanophorae的形态和次生代谢产物的研究,这可以为识别不同物种提供有效的信息。
    The Balanophorae are not only traditional Chinese herbal medicines but also functional foods with diverse sources. This study aimed to distinguish pharmacognostic characteristics and secondary metabolites among different species of Balanophorae. Eight species of Balanophorae herbs were harvested, including 21 batches with 209 samples. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze secondary metabolites of Balanophorae from 21 sources. Targeted metabolomic analysis was performed to compare differences among the groups. Rhopalocnemis phalloide and B. indica can be identified by their pharmacognostic characteristics. Then, 41 secondary metabolites were identified or characterized in the mixed extracts of the 209 samples, mainly phenolic acids, flavonoids, and their derivatives. The distribution of these secondary metabolites revealed apparent differences among different species. In addition, targeted metabolomic analysis suggested that the secondary metabolite profiles of seven species of Balanophorae showed noticeable differences, and differences were also observed among different growing regions. Finally, five important metabolic markers were screened to successfully distinguish B. laxiflora, B. harlandii, and B. polyandra, including three phenolic acids and two flavonoids. This is the first study to systematically compare both the morphology and secondary metabolites among different sources of Balanophorae, which could provide effective information for identifying diverse species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号