Microscopy, Phase-Contrast

显微镜,相位对比度
  • 文章类型: Journal Article
    细胞生物学家长期以来一直寻求在没有标记的情况下观察活细胞中的细胞内结构的能力。这项研究提出了调整市售变迹相衬(APC)显微镜系统的程序,以更好地可视化活细胞中各种亚细胞细胞器的动态行为。通过利用这种技术的多功能性来捕获连续图像,我们可以实时观察病毒感染后细胞几何形态的变化,无需探针或侵入性染色。调整APC显微镜系统是一个高效的平台,可同时观察具有出色分辨率的各种亚细胞结构的动态行为。关键词:无标记成像,细胞器动力学,病毒感染,相衬变迹。
    Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    星形胶质细胞是中枢神经系统中的糖酵解活性细胞,在从稳态到神经传递的各种脑过程中发挥关键作用。星形胶质细胞具有复杂的分支形态,经常用荧光显微镜检查。然而,染色和固定可能会影响星形胶质细胞的特性,从而影响星形胶质细胞动力学和形态学实验数据的准确性。另一方面,相差显微镜可用于研究星形胶质细胞的形态而不影响它们,但产生的低对比度图像的后处理是具有挑战性的。这项工作的主要结果是一种基于显微图像的机器学习识别的未染色星形胶质细胞的识别和形态分析的新方法。我们进行了一系列实验,涉及从大鼠大脑皮层中培养分离的星形胶质细胞,然后进行显微镜检查。使用所提出的方法,我们追踪了分支平均总长度的时间演变,分支,在我们的实验中每个星形胶质细胞的面积。我们相信,提出的方法和获得的实验数据将对细胞生物学的科学界感兴趣和有益,生物物理学,和机器学习。
    Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to study astrocytes morphology without affecting them, but the post-processing of the resulting low-contrast images is challenging. The main result of this work is a novel approach for recognition and morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic images. We conducted a series of experiments involving the cultivation of isolated astrocytes from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the temporal evolution of the average total length of branches, branching, and area per astrocyte in our experiments. We believe that the proposed approach and the obtained experimental data will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    定量相位成像(QPI)已成为生物成像中的重要工具,提供波前畸变的精确测量,因此,关键的细胞代谢指标,如干质量和密度。然而,只有少数QPI应用在光学厚的标本中得到了证明,其中散射增加背景并降低对比度。基于结构照明干涉术的概念,我们引入了薄样品和厚样品的QPI的梯度延迟光学显微镜(GROM)。GROM通过将液晶延迟器集成到照明路径中,将任何标准的差分干涉对比度(DIC)显微镜转换为QPI平台,使DIC显微镜的剪切光束的独立相移。GROM大大简化了相关配置,降低成本,并消除并行成像模式中的能量损失,如荧光。我们成功地在各种各样的标本上测试了GROM,从微生物和红细胞到光学厚(〜300μm)的植物根,没有固定或清除。
    Quantitative phase imaging (QPI) has become a vital tool in bioimaging, offering precise measurements of wavefront distortion and, thus, of key cellular metabolism metrics, such as dry mass and density. However, only a few QPI applications have been demonstrated in optically thick specimens, where scattering increases background and reduces contrast. Building upon the concept of structured illumination interferometry, we introduce Gradient Retardance Optical Microscopy (GROM) for QPI of both thin and thick samples. GROM transforms any standard Differential Interference Contrast (DIC) microscope into a QPI platform by incorporating a liquid crystal retarder into the illumination path, enabling independent phase-shifting of the DIC microscope\'s sheared beams. GROM greatly simplifies related configurations, reduces costs, and eradicates energy losses in parallel imaging modalities, such as fluorescence. We successfully tested GROM on a diverse range of specimens, from microbes and red blood cells to optically thick (~ 300 μm) plant roots without fixation or clearing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体生物发生是在核仁中开始的,通过液-液相分离形成的多相生物分子缩合物。核仁是一种强大的疾病生物标志物和应激生物传感器,其形态反映了功能。在这里,我们使用了数字全息显微镜(DHM),一种无标签的定量相差显微镜技术,检测贴壁和悬浮人细胞中的核仁。我们训练卷积神经网络来自动检测和量化DHM图像上的核仁。包含细胞光学厚度信息的全息图使我们能够定义一种新的指数,我们使用该指数来区分其物质状态已被蓝光诱导的蛋白质聚集光遗传学调节的核仁。也可以区分其功能受到药物治疗或核糖体蛋白消耗影响的核仁。我们探索了该技术检测其他天然和病理冷凝物的潜力,例如在过表达亨廷顿突变形式时形成的那些,ataxin-3或TDP-43,以及其他细胞组件(脂滴)。我们得出的结论是,DHM是定量表征核仁和其他细胞组件的强大工具,包括他们的物质状态,没有任何染色。
    Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全视场光学相干显微镜(FF-OCM)是一种用于背散射和具有外延检测的相位成像的流行技术。传统方法有两个局限性:关于样品的功能信息的次优利用和具有多个运动部件的复杂光学设计用于相衬。
    我们报告了一种能够产生动态强度的OCM设置,阶段,和伪光谱对比度与单发全场视频速率成像,称为双色四相(BiTe)全场OCM,没有移动部件。
    BiTeOCM在额定带宽之外资源地使用抗反射(AR)涂层的相移特性来创建四个独特的相移,用两个发射滤光片检测光谱对比度。
    BiTeOCM通过捕获强度和相位轮廓而没有任何伪影或斑点噪声,从而克服了先前FF-OCM设置技术的缺点,用于对三维(3D)中的散射样品进行成像。BiTeOCM还有效地利用原始数据来生成三个互补对比:强度,阶段,和颜色。我们展示了BiTeOCM来观察细胞动力学,图像生活,在3D中移动微型动物,捕获散射组织的光谱血液动力学以及动态强度和相位曲线,并用两种不同的颜色对秋叶的微观结构进行成像。
    BiTeOCM可以最大限度地提高FF-OCM的信息效率,同时保持定量设计的整体简单性,动态,和生物样品的光谱表征。
    UNASSIGNED: Full-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast.
    UNASSIGNED: We report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts.
    UNASSIGNED: BiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast.
    UNASSIGNED: BiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors.
    UNASSIGNED: BiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Endothelial cell density (ECD) is a crucial parameter for the release of corneal grafts for transplantation. The Lions Eye Bank of Baden-Württemberg uses the \"Rhine-Tec Endothelial Analysis System\" for ECD quantification, which is based on a fixed counting frame method considering only a small sample of 15 to 40 endothelial cells. The measurement result therefore depends on the frame placement and manual correction of the cells counted within the frame. To increase the sample size and create higher objectivity, we developed a new method based on \"deep learning\" that automatically detects all visible endothelial cells in the image. This study aims to compare this new method with the conventional Rhine-Tec system. 9375 archived phase-contrast microscopic images of consecutive grafts from the Lions Eye Bank were evaluated with the deep learning method and compared with the corresponding archived analyses of the Rhine-Tec system. Means, Bland-Altman and correlation analyses were compared. Comparable results were obtained for both methods. The mean difference between the Rhine-Tec system and the deep learning method was only - 23 cells/mm2 (95% confidence interval - 29 to - 17). There was a statistically significant positive correlation between the two methods, with a correlation coefficient of 0.748. What was striking in the Bland-Altman analysis were clustered deviations in the cell density range between 2000 and 2500 cells/mm2 - with higher values in the Rhine-Tec system. The comparable results for cell density measurement values underline the validity of the deep learning-based method. The deviations around the formal threshold for graft release of 2000 cells/mm2 are most likely explained by the higher objectivity of the deep learning method and the fact that measurement frames and manual corrections were specifically selected to reach the formal threshold of 2000 cells/mm2 when the full area endothelial quality was good. This full area assessment of the graft endothelium cannot currently be replaced by deep learning methods and remains the most important basis for graft release for keratoplasty.
    Die Endothelzelldichte ist ein objektiver Parameter für die Freigabe von Hornhauttransplantaten zur Operation. In der Lions Hornhautbank Baden-Württemberg wird für diese Quantifizierung das „Rhine-Tec Endothelial Analysis System“ verwendet, das auf der Methode des festen Zählrahmens basiert und nur eine kleine Stichprobe von 15 bis 40 Endothelzellen berücksichtigt. Das Messergebnis hängt daher von der Platzierung des Zählrahmens und der manuellen Nachkorrektur der im Zählrahmen gewerteten Zellen ab. Um den Stichprobenumfang zu erhöhen und eine höhere Objektivität zu schaffen, haben wir auf Grundlage von „Deep Learning“ eine neue Methode entwickelt, die alle sichtbaren Endothelzellen im Bild vollautomatisch erkennt. Ziel dieser Studie ist der Vergleich dieser neuen Methode mit dem konventionellen Rhine-Tec-System. 9375 archivierte phasenkontrastmikroskopische Bildaufnahmen von konsekutiven Transplantaten aus der Lions Hornhautbank wurden mit der Deep-Learning-Methode evaluiert und mit den korrespondierenden archivierten Analysen des Rhine-Tec-Systems verglichen. Zum Vergleich der Mittelwerte wurden Bland-Altman- und Korrelationsanalysen durchgeführt. Es ergaben sich vergleichbare Ergebnisse beider Methoden. Die mittlere Differenz zwischen Rhine-Tec-System und der Deep-Learning-Methode betrug lediglich − 23 Zellen/mm2 (95%-Konfidenzintervall: − 29 – − 17). Es zeigte sich eine statistisch signifikant positive Korrelation zwischen den beiden Methoden mit 0,748. Auffällig in der Bland-Altman-Analyse waren gehäufte Abweichungen im Zelldichtenbereich zwischen 2000 und 2500 Zellen/mm2 mit höheren Werten beim Rhine-Tec-System. Die vergleichbaren Ergebnisse bez. der Zelldichtenmesswerte unterstreichen die Wertigkeit des Deep-Learning-basierten Verfahrens. Die Abweichungen im Bereich der formalen Schwelle für eine Transplantatfreigabe von 2000 Zellen/mm2 sind sehr wahrscheinlich durch die höhere Objektivität der Deep-Learning-Methode erklärbar und der Tatsache geschuldet, dass Messrahmen und manuelle Nachkorrektur unter Berücksichtigung des Gesamtbildes aus der Endothelbewertung jeweils gezielt ausgewählt worden waren. Diese vollständige Sichtung des Transplantatendothels und Qualitätsbeurteilung kann aktuell noch nicht durch das Deep-Learning-System ersetzt werden und ist somit weiterhin die wichtigste Grundlage der Transplantatfreigabe zur Keratoplastik.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管散焦可用于在透射电子显微镜图像中产生部分相衬,通过开发相位板可以进一步改善低温电子显微镜(cryo-EM),该相位板通过对电子束的未散射部分施加相移来增加对比度。已经研究了许多方法,包括光和电子之间的能动相互作用。我们回顾了这种方法在高分辨率方面取得的最新成功,单粒子低温EM。我们还回顾了使用脉冲或近场增强激光作为替代品的现状,以及使用具有分段检测器而不是相位板的扫描透射电子显微镜(STEM)的方法。
    Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM. We also review the status of using pulsed or near-field enhanced laser light as alternatives, along with approaches that use scanning transmission electron microscopy (STEM) with a segmented detector rather than a phase plate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    检测乳腺组织改变对于癌症诊断至关重要。然而,固有的二维限制了组织学程序识别这些变化的有效性。我们的研究应用了基于X射线相衬显微断层成像(PhCμCT)的3D虚拟组织学方法,在同步加速器设施执行,调查包括不同类型病变的乳腺组织样本,即导管内乳头状瘤,微乳头状囊内癌,和浸润性小叶癌.X射线和组织学图像的一对一比较探讨了3DX射线虚拟组织学的临床潜力。结果表明,PhCμCT技术具有较高的空间分辨率和软组织敏感性,虽然是非破坏性的,不需要专门的样品处理,并且与常规组织学兼容。PhCμCT可以增强基质组织等形态学特征的可视化,纤维血管核心,末端导管小叶单元,基质/上皮界面,基底膜,和脂肪细胞。尽管没有达到(亚)细胞水平,PhCμCT图像的三维性可以描述乳腺组织的深度变化,可能揭示单个组织学切片遗漏的病理相关细节。与连续切片相比,PhCμCT允许沿任何方向对样品体积进行虚拟调查,可能指导病理学家选择最合适的切割平面。总的来说,PhCμCT虚拟组织学作为增加传统组织学以提高效率的工具,具有很大的前景。可访问性,病理评价的诊断准确性。
    Detecting breast tissue alterations is essential for cancer diagnosis. However, inherent bidimensionality limits histological procedures\' effectiveness in identifying these changes. Our study applies a 3D virtual histology method based on X-ray phase-contrast microtomography (PhC μ CT), performed at a synchrotron facility, to investigate breast tissue samples including different types of lesions, namely intraductal papilloma, micropapillary intracystic carcinoma, and invasive lobular carcinoma. One-to-one comparisons of X-ray and histological images explore the clinical potential of 3D X-ray virtual histology. Results show that PhC μ CT technique provides high spatial resolution and soft tissue sensitivity, while being non-destructive, not requiring a dedicated sample processing and being compatible with conventional histology. PhC μ CT can enhance the visualization of morphological characteristics such as stromal tissue, fibrovascular core, terminal duct lobular unit, stromal/epithelium interface, basement membrane, and adipocytes. Despite not reaching the (sub) cellular level, the three-dimensionality of PhC μ CT images allows to depict in-depth alterations of the breast tissues, potentially revealing pathologically relevant details missed by a single histological section. Compared to serial sectioning, PhC μ CT allows the virtual investigation of the sample volume along any orientation, possibly guiding the pathologist in the choice of the most suitable cutting plane. Overall, PhC μ CT virtual histology holds great promise as a tool adding to conventional histology for improving efficiency, accessibility, and diagnostic accuracy of pathological evaluation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自制造以来,进口,日本已经完全废除了石棉产品的使用,石棉排放到大气中的主要原因是拆除和拆除用含石棉材料建造的建筑物。及早发现和纠正不适当的拆除和清除作业所产生的石棉排放,需要一种快速的方法来测量大气中的石棉纤维。当前的快速测量方法是短期大气采样和相差显微镜计数的组合。然而,视觉计数需要相当长的时间并且不够快。使用人工智能(AI)分析显微镜图像以检测纤维可能会大大减少计数所需的时间。因此,在这项研究中,我们研究了使用AI图像分析来检测相差显微镜图像中的纤维。使用相差显微镜观察了由铁石棉和温石棉的标准样品制备的一系列模拟大气样品。图像被捕获,和培训数据集是根据专家分析师的计数结果创建的。我们采用了两种类型的人工智能模型——实例分割模型,即基于掩模区域的卷积神经网络(MaskR-CNN),和语义分割模型,即多级聚合网络(MA-Net)-经过训练可以检测石棉纤维。使用MaskR-CNN模型实现的光纤检测准确率为57%的召回率和46%的准确率,而MA-Net模型的召回准确率为95%,准确率为91%。因此,MA-Net模型得到了满意的结果。在两种AI模型中,光纤检测所需的时间均小于1s/图像,这比专家分析师计数所需的时间要快。
    Since the manufacture, import, and use of asbestos products have been completely abolished in Japan, the main cause of asbestos emissions into the atmosphere is the demolition and removal of buildings built with asbestos-containing materials. To detect and correct asbestos emissions from inappropriate demolition and removal operations at an early stage, a rapid method to measure atmospheric asbestos fibers is required. The current rapid measurement method is a combination of short-term atmospheric sampling and phase-contrast microscopy counting. However, visual counting takes a considerable amount of time and is not sufficiently fast. Using artificial intelligence (AI) to analyze microscope images to detect fibers may greatly reduce the time required for counting. Therefore, in this study, we investigated the use of AI image analysis for detecting fibers in phase-contrast microscope images. A series of simulated atmospheric samples prepared from standard samples of amosite and chrysotile were observed using a phase-contrast microscope. Images were captured, and training datasets were created from the counting results of expert analysts. We adopted 2 types of AI models-an instance segmentation model, namely the mask region-based convolutional neural network (Mask R-CNN), and a semantic segmentation model, namely the multi-level aggregation network (MA-Net)-that were trained to detect asbestos fibers. The accuracy of fiber detection achieved with the Mask R-CNN model was 57% for recall and 46% for precision, whereas the accuracy achieved with the MA-Net model was 95% for recall and 91% for precision. Therefore, satisfactory results were obtained with the MA-Net model. The time required for fiber detection was less than 1 s per image in both AI models, which was faster than the time required for counting by an expert analyst.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在使细胞分类自动化,特别是在识别细胞凋亡时,使用人工智能(AI)结合相差显微镜。目的是减少对人工观察的依赖,这通常是耗时的,并且容易受到人为错误的影响。
    方法:使用K562细胞作为模型系统,并在施用γ-分泌酶抑制剂后诱导细胞凋亡。应用荧光染色来检测DNA片段化和胱天蛋白酶活性。使用相差和荧光显微镜获得细胞图像。两种AI模型,使用这些图像训练Lobe(R)和基于服务器的ResNet50,并通过五次交叉验证使用F值进行评估。
    结果:两种AI模型都证明了将单个细胞有效地分为三组:caspase阴性/无DNA片段,caspase阳性/无DNA片段,和半胱天冬酶阳性/DNA片段化。值得注意的是,AI模型区分细胞的能力依赖于相衬图像的细微变化,可能与细胞凋亡过程中折射率的变化有关。两种AI模型都表现出很高的准确性,基于服务器的ResNet50模型通过重复训练显示出改进的性能。
    结论:这项研究证明了AI辅助相差显微镜作为自动化细胞分类的强大工具的潜力,特别是在细胞凋亡研究和抗癌物质发现的背景下。通过减少体力劳动的需要和提高分类准确性,这种方法有望加快高通量细胞筛选,为医学诊断和药物开发的进步做出了重大贡献。
    OBJECTIVE: This study aimed to automate the classification of cells, particularly in identifying apoptosis, using artificial intelligence (AI) in conjunction with phase-contrast microscopy. The objective was to reduce reliance on manual observation, which is often time-consuming and subject to human error.
    METHODS: K562 cells were used as a model system and apoptosis was induced following administration of gamma-secretase inhibitors. Fluorescence staining was applied to detect DNA fragmentation and caspase activity. Cell images were obtained using both phase-contrast and fluorescence microscopy. Two AI models, Lobe(R) and a server-based ResNet50, were trained using these images and evaluated using F-values through five-fold cross-validation.
    RESULTS: Both AI models demonstrated effectively categorized individual cells into three groups: caspase-negative/no DNA fragmentation, caspase-positive/no DNA fragmentation, and caspase-positive/DNA fragmentation. Notably, the AI models\' ability to differentiate cells relied on subtle variations in phase-contrast images, potentially linked to changes in refractive indices during apoptosis progression. Both AI models exhibited high accuracy, with the server-based ResNet50 model showing improved performance through repeated training.
    CONCLUSIONS: This study demonstrates the potential of AI-assisted phase-contrast microscopy as a powerful tool for automating cell classification, especially in the context of apoptosis research and the discovery of anticancer substances. By reducing the need for manual labor and enhancing classification accuracy, this approach holds promise for expediting high-throughput cell screening, significantly contributing to advancements in medical diagnostics and drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号