Mesh : Humans Microscopy / methods Erythrocytes Microscopy, Phase-Contrast / methods Plant Roots Quantitative Phase Imaging

来  源:   DOI:10.1038/s41598-024-60057-y   PDF(Pubmed)

Abstract:
Quantitative phase imaging (QPI) has become a vital tool in bioimaging, offering precise measurements of wavefront distortion and, thus, of key cellular metabolism metrics, such as dry mass and density. However, only a few QPI applications have been demonstrated in optically thick specimens, where scattering increases background and reduces contrast. Building upon the concept of structured illumination interferometry, we introduce Gradient Retardance Optical Microscopy (GROM) for QPI of both thin and thick samples. GROM transforms any standard Differential Interference Contrast (DIC) microscope into a QPI platform by incorporating a liquid crystal retarder into the illumination path, enabling independent phase-shifting of the DIC microscope\'s sheared beams. GROM greatly simplifies related configurations, reduces costs, and eradicates energy losses in parallel imaging modalities, such as fluorescence. We successfully tested GROM on a diverse range of specimens, from microbes and red blood cells to optically thick (~ 300 μm) plant roots without fixation or clearing.
摘要:
定量相位成像(QPI)已成为生物成像中的重要工具,提供波前畸变的精确测量,因此,关键的细胞代谢指标,如干质量和密度。然而,只有少数QPI应用在光学厚的标本中得到了证明,其中散射增加背景并降低对比度。基于结构照明干涉术的概念,我们引入了薄样品和厚样品的QPI的梯度延迟光学显微镜(GROM)。GROM通过将液晶延迟器集成到照明路径中,将任何标准的差分干涉对比度(DIC)显微镜转换为QPI平台,使DIC显微镜的剪切光束的独立相移。GROM大大简化了相关配置,降低成本,并消除并行成像模式中的能量损失,如荧光。我们成功地在各种各样的标本上测试了GROM,从微生物和红细胞到光学厚(〜300μm)的植物根,没有固定或清除。
公众号