Silver

银色
  • 文章类型: Journal Article
    植入物广泛用于骨科和牙科科学领域。钛(TI)及其合金已成为应用最广泛的植入材料,但植入物相关感染仍然是植入物手术后常见且严重的并发症.此外,钛表现出生物惰性,防止植入物和骨组织强烈结合,并可能导致植入物松动和脱落。因此,预防植入物感染和提高其骨诱导能力是重要目标。
    研究纳米银/聚乳酸乙醇酸(NSPTICU)涂层钛铜合金植入物的抗菌活性和骨诱导能力,为抑制植入物相关感染和促进骨整合提供新的途径。
    我们首先通过研究MC3T3-E1细胞的增殖和分化来检查NSPTICU植入物的体外成骨能力。此外,通过显微计算机断层扫描(micro-CT)研究了NSPTICU植入物诱导SD大鼠成骨活性的能力,苏木精-伊红(HE)染色,masson染色,免疫组织化学和范吉森(VG)染色。用革兰氏阳性金黄色葡萄球菌(Sa)和革兰氏阴性大肠杆菌(E。大肠杆菌)细菌。Sa被用作试验细菌,通过粗视标本采集研究了NSPTICU植入大鼠体内的抗菌能力,细菌菌落计数,HE染色和Giemsa染色。
    茜素红染色,碱性磷酸酶(ALP)染色,实时定量聚合酶链反应(qRT-PCR)和蛋白质印迹分析显示,NSPTICU促进MC3T3-E1细胞的成骨分化。体外抗菌结果表明,NSPTICU植入物表现出更好的抗菌性能。动物实验表明,NSPTICU可抑制炎症反应,促进骨缺损的修复。
    NSPTICU具有出色的抗菌和骨诱导能力,骨缺损的治疗具有广阔的应用前景。
    UNASSIGNED: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals.
    UNASSIGNED: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration.
    UNASSIGNED: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining.
    UNASSIGNED: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects.
    UNASSIGNED: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨折被认为是导致严重并发症的医疗紧急情况。
    本研究旨在描述Ag-NPs-FG对兔骨折愈合的加速作用。
    用胡芦巴(FG)还原银NPs(AgNPs),装入淀粉凝胶基质中,并研究了它们的形态,尺寸,和收费。40只成年雄性兔随机组成4组。在每只兔的右胫骨的近端干meta处产生3.5mm直径的骨缺损。第1-4组注射安慰剂生理盐水,AgNPs-FG,普通凝胶,和骨缺损区的FG凝胶,分别。术后8周根据影像学评估愈合情况,骨转换标记,和组织病理学检查。
    获得的AgNPs-FG为淡红色,球形,吸光度为423nm,尺寸为118.0±1.7nm,和-7.8±0.518mV的表面电荷。制备的AgNPs-FG水凝胶清晰,半透明,和同质的。pH值为6.55-6.5±0.2,粘度为4,000和1,875cPs,FG和AgNPs-FG水凝胶的铺展性分别为1.6±0.14和2.0±0.15,分别。与其他治疗组相比,第2组的放射学结合量表显着改善(p<0.05),骨转换标志物显着增加(p<0.05)。组织病理学检查显示,第2组和第4组在术后第28天形成成熟骨。
    载有AgNPs-FG水凝胶的胶体纳米制剂可能是加速兔胫骨骨愈合过程的有前途的制剂。
    UNASSIGNED: A fracture is considered a medical emergency leading to considerable complications.
    UNASSIGNED: This study aimed to describe the accelerating action of Ag-NPs-FG on fracture healing in rabbits.
    UNASSIGNED: Silver NPs (AgNPs) were reduced with fenugreek (FG), loaded into a starch gel base, and investigated for their morphology, size, and charge. Four equal groups were randomly formed of 40 adult male rabbits. A 3.5 mm diameter bone defect was created at the proximal metaphysis of the right tibia in each rabbit. Groups 1-4 were injected with placebo saline, AgNPs-FG, plain gel, and FG-gel at the bone defect zone, respectively. The healing was assessed for 8 weeks postoperatively based on the radiographic, bone turnover markers, and histopathological examinations.
    UNASSIGNED: The AgNPs-FG was obtained as a faint reddish color, spherical in shape, with an absorbance of 423 nm, a size of 118.0 ± 1.7 nm, and a surface charge of -7.8 ± 0.518 mV. The prepared AgNPs-FG hydrogel was clear, translucent, and homogenous. The pH values were 6.55-6.5 ± 0.2, the viscosity of 4,000 and 1,875 cPs, and spreadability of 1.6 ± 0.14 and 2.0 ± 0.15 for both FG and AgNPs-FG hydrogel, respectively. The radiographic union scale was significantly (p < 0.05) improved in group 2 with a significant (p < 0.05) increase in bone turnover markers was found in comparison to other treated groups. Histopathological examination revealed the formation of mature bone on the 28th postoperative day in groups 2 and 4.
    UNASSIGNED: Colloidal nano-formulation of AgNPs-FG loaded hydrogel could be a promising formulation to accelerate rabbits\' tibial bone healing process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一个高度敏感的,建立了基于磁性Fe3O4@mTiO2(M-TiO2)纳米复合材料与SERRS的选择性和可回收组氨酸检测方法。介孔M-TiO2纳米粒子用4-氨基苯硫酚官能化,然后在5分钟内通过偶氮偶联反应与组氨酸偶联,产生相应的偶氮化合物。由于在532nm激发激光下AgNP的分子共振效应和等离子体效应,偶氮产品的强而特异的SERRS响应允许使用负载有AgNP的M-TiO2设备对组氨酸进行超灵敏和选择性的检测。随着M-TiO2的磁富集,灵敏度进一步提高。检出限(LOD)低至8.00×10-12mol/L。M-TiO2证明了在没有任何样品预处理的情况下对人尿液中组氨酸测定的适用性。此外,由于TiO2辅助和等离子体激元增强的光催化作用,M-TiO2装置可以循环3个循环,偶氮产物在紫外线照射下发生光降解。总之,基于偶氮偶合和SERRS光谱合成了一种多功能和可回收的M-TiO2器件,用于超灵敏和特异性组氨酸传感。此外,拟议的系统证明了在食品安全领域多重测定有毒化合物的潜力,工业生产和环境保护,这得益于SERRS的指纹特性和通用性。
    A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling reaction in 5 min, producing the corresponding azo compound. The strong and specific SERRS response of the azo product allowed for ultrasensitive and selective detection for histidine with an M-TiO2 device loaded with Ag NPs due to the molecular resonance effect and plasmonic effect of Ag NPs under a 532 nm excitation laser. The sensitivity was further enhanced with the magnetic enrichment of M-TiO2. The limit of detection (LOD) was as low as 8.00 × 10-12 mol/L. The M-TiO2 demonstrated applicability towards histidine determination in human urine without any sample pretreatment. Additionally, the M-TiO2 device can be recycled for 3 cycles with the photodegradation of the azo product under UV irradiation due to TiO2-assisted and plasmon-enhanced photocatalysis. In summary, a multifunctional and recyclable M-TiO2 device was synthesized based on azo coupling and SERRS spectroscopy for ultra-sensitive and specific histidine sensing. In addition, the proposed system demonstrated the potential for the multiplex determination of toxic compounds in the fields of food safety, industrial production and environmental protection, which benefit from the fingerprint property and universality of SERRS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶液处理的石墨烯有利于大规模,低成本生产。然而,它的横向尺寸小,可变层厚度,和不可控的氧化水平仍然制约着其广泛的电子应用。在这项研究中,介绍了一种新开发的电化学剥离工艺,并通过界面自组装制备了石墨烯贴片膜电极。我们能够通过电压和电解质调制来最大程度地减少剥离过程中石墨烯胶体的劣化,但是石墨烯电极的补片结构仍然显示出低电导率,具有许多片间连接。因此,我们确定了通过直流电沉积在多层堆叠的石墨烯膜上生长完全网络银结构的最佳条件,这些银-石墨烯复合膜显示出显着降低的石墨烯胶体贴膜表面电阻。
    Solution-processed graphene is beneficial for large-scale, low-cost production. However, its small lateral size, variable layer thickness, and uncontrollable oxidation level still restrict its widespread electronic application. In this study, a newly developed electrochemical exfoliation process was introduced, and a graphene-patched film electrode was fabricated by interfacial self-assembly. We were able to minimize the deterioration of graphene colloids during exfoliation by voltage and electrolyte modulation, but the patched structure of the graphene electrode still showed low conductivity with numerous inter-sheet junctions. Therefore, we determined the optimal conditions for the growth of fully networked silver structures on the multi-stacked graphene film by direct current electro-deposition, and these silver-graphene composite films showed significantly lowered graphene-colloid-patched film surface resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    银已被证明可以改善其他药物对革兰氏阳性和阴性细菌的抗生素作用。在这项研究中,我们调查了大麻二酚(CBD)的抗生素潜力,大麻酚(CBC)和大麻酚(CBG)及其酸性对应物(CBDA,CBCA,CBGA)针对革兰氏阳性细菌,并使用96孔板生长测定和活力(CFU-菌落形成单位)进一步探索了硝酸银或银纳米颗粒的累加或协同作用。所有六种大麻素对MRSA具有很强的抗生素作用,对CBG的最低抑制浓度(MIC)为2mg/L,CBD和CBCA;CBGA为4mg/L;CBC和CBDA为8mg/L。使用96孔棋盘分析,CBC,CBG和CBGA与硝酸银表现出完全或部分协同作用;CBC,CBDA和CBGA与银纳米颗粒完全协同对抗MRSA。使用CFU测定,CBC的组合,CBGA和CBG与硝酸银或银纳米颗粒,全部为一半或四分之一的中等收入国家,表现出坚强,时间依赖性抑制细菌生长(硝酸银)和杀菌作用(银纳米颗粒)。这些数据将导致进一步研究特定大麻素与银盐或纳米颗粒组合对抗耐药革兰氏阳性细菌的可能的生物医学应用。
    Silver has been shown to improve the antibiotic effects of other drugs against both Gram- positive and -negative bacteria. In this study, we investigated the antibiotic potential of cannabidiol (CBD), cannabichromene (CBC) and cannabigerol (CBG) and their acidic counterparts (CBDA, CBCA, CBGA) against Gram-positive bacteria and further explored the additive or synergistic effects of silver nitrate or silver nanoparticles using 96-well plate growth assays and viability (CFUs- colony-forming units). All six cannabinoids had strong antibiotic effects against MRSA with minimal inhibitory concentrations (MICs) of 2 mg/L for CBG, CBD and CBCA; 4 mg/L for CBGA; and 8 mg/L for CBC and CBDA. Using 96-well checkerboard assays, CBC, CBG and CBGA showed full or partial synergy with silver nitrate; CBC, CBDA and CBGA were fully synergistic with silver nanoparticles against MRSA. Using CFU assays, combinations of CBC, CBGA and CBG with either silver nitrate or silver nanoparticles, all at half or quarter MICs, demonstrated strong, time-dependent inhibition of bacterial growth (silver nitrate) and bactericidal effects (silver nanoparticles). These data will lead to further investigation into possible biomedical applications of specific cannabinoids in combination with silver salts or nanoparticles against drug-resistant Gram-positive bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过环境友好的方法生产纳米材料是纳米技术可持续发展的重中之重。本文介绍了在室温下使用泥炭藓的水提取物合成银纳米颗粒的数据。形态学,稳定性,使用各种技术分析纳米颗粒的大小,包括透射电子显微镜,多普勒激光测速,和紫外可见光谱。此外,采用傅里叶变换红外光谱分析纳米材料表面苔藓代谢物的存在。不同浓度的柠檬酸盐稳定和苔藓提取物稳定的银纳米颗粒对细胞活力的影响,坏死诱导,和细胞阻抗进行了比较。使用暗视野显微镜和高光谱成像评估了银纳米颗粒在单层和三维细胞球状体中的内化。提出了一种在室温下合成银纳米颗粒的环保方法,这使得可以获得具有高生物利用度的20-30nm大小的球形纳米颗粒,并且在人类生活的各个领域具有潜在的应用。
    The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用二氧化硅(SiO2)@Ag纳米颗粒(NPs)的表面增强拉曼光谱(SERS)标记易于处理,并且正在各个领域进行研究,包括SERS成像和免疫测定。这主要是由于其结构优势,具有高SERS活性。然而,在各种条件下,由于奥斯特瓦尔德熟化现象,引入SiO2表面的AgNP可能会发生结构转变。因此,SERS信号的一致性降低,降低了它们作为SERS基板的可用性。直到最近,已积极进行研究以提高单个AgNPs的稳定性。然而,关于SiO2@AgNPs用作SERS标记材料的研究仍然缺乏。在这项研究中,我们利用拉曼标记化合物(RLC)来防止SiO2@AgNPs在各种条件下的结构变形,并提出了出色的SiO2@Ag@RLC-PreNPs作为SERS标记材料。使用各种RLCs,我们证实,4-巯基苯甲酸(4-MBA)是保持2个月最高稳定性的RLC。这些结果也观察到SiO2@AgNPs,在各种pH和温度条件下不稳定。我们相信使用SiO2@AgNP和4-MBA的SERS标签可以用于基于SERS的各种应用中,因为所得SERS信号的高稳定性和一致性。
    Surface-enhanced Raman spectroscopy (SERS) tagging using silica(SiO2)@Ag nanoparticles (NPs) is easy to handle and is being studied in various fields, including SERS imaging and immunoassays. This is primarily due to its structural advantages, characterized by high SERS activity. However, the Ag NPs introduced onto the SiO2 surface may undergo structural transformation owing to the Ostwald ripening phenomenon under various conditions. As a result, the consistency of the SERS signal decreases, reducing their usability as SERS substrates. Until recently, research has been actively conducted to improve the stability of single Ag NPs. However, research on SiO2@Ag NPs used as a SERS-tagging material is still lacking. In this study, we utilized a Raman labeling compound (RLC) to prevent the structural deformation of SiO2@Ag NPs under various conditions and proposed excellent SiO2@Ag@RLC-Pre NPs as a SERS-tagging material. Using various RLCs, we confirmed that 4-mercaptobenzoic acid (4-MBA) is the RLC that maintains the highest stability for 2 months. These results were also observed for the SiO2@Ag NPs, which were unstable under various pH and temperature conditions. We believe that SERS tags using SiO2@Ag NPs and 4-MBA can be utilized in various applications on based SERS because of the high stability and consistency of the resulting SERS signal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰岛素和C肽作为糖尿病和某些肝病的临床指标起着至关重要的作用。然而,关于同时检测微量血清中胰岛素和C肽的研究有限。有必要开发一种具有高灵敏度和特异性的新方法来同时检测胰岛素和C肽。
    使用简单的湿化学方法制造了核-壳-卫星分层结构的纳米复合材料作为SERS生物传感器,采用4-MBA和DTNB进行识别,抗体进行特异性捕获。金纳米棒(AuNRs)用拉曼报道分子和银纳米粒子(AgNP)修饰,建立高灵敏度的SERS标签,用于检测胰岛素和C肽。抗体修饰的商业羧化磁珠@抗体用作捕获探针。通过探针捕获目标材料并结合SERS标签,形成“三明治”复合结构,用于后续检测。
    在优化条件下,制备的纳米复合材料可用于同时检测胰岛素和C肽,检出限为4.29×10-5pM和1.76×10-10nM。胰岛素浓度(4.29×10-5-4.29pM)与1075cm-1处的SERS强度呈强线性相关,在检测人血清样品中具有高回收率(96.4-105.3%)和低RSD(0.8%-10.0%)。同时,C肽浓度(1.76×10-10-1.76×10-3nM)也与1333cm-1处的SERS强度呈特定的线性相关,回收率为85.4%-105.0%,RSD为1.7%-10.8%。
    这一突破提供了一种小说,敏感,方便,稳定的方法,用于糖尿病和某些肝病的临床诊断。总的来说,我们的发现为生物医学研究领域做出了重大贡献,为改善糖尿病和肝病的诊断和监测开辟了新的可能性。
    UNASSIGNED: Insulin and C-peptide played crucial roles as clinical indicators for diabetes and certain liver diseases. However, there has been limited research on the simultaneous detection of insulin and C-peptide in trace serum. It is necessary to develop a novel method with high sensitivity and specificity for detecting insulin and C-peptide simultaneously.
    UNASSIGNED: A core-shell-satellites hierarchical structured nanocomposite was fabricated as SERS biosensor using a simple wet-chemical method, employing 4-MBA and DTNB for recognition and antibodies for specific capture. Gold nanorods (Au NRs) were modified with Raman reporter molecules and silver nanoparticles (Ag NPs), creating SERS tags with high sensitivity for detecting insulin and C-peptide. Antibody-modified commercial carboxylated magnetic bead@antibody served as the capture probes. Target materials were captured by probes and combined with SERS tags, forming a \"sandwich\" composite structure for subsequent detection.
    UNASSIGNED: Under optimized conditions, the nanocomposite fabricated could be used to detect simultaneously for insulin and C-peptide with the detection limit of 4.29 × 10-5 pM and 1.76 × 10-10 nM in serum. The insulin concentration (4.29 × 10-5-4.29 pM) showed a strong linear correlation with the SERS intensity at 1075 cm-1, with high recoveries (96.4-105.3%) and low RSD (0.8%-10.0%) in detecting human serum samples. Meanwhile, the C-peptide concentration (1.76 × 10-10-1.76 × 10-3 nM) also showed a specific linear correlation with the SERS intensity at 1333 cm-1, with recoveries 85.4%-105.0% and RSD 1.7%-10.8%.
    UNASSIGNED: This breakthrough provided a novel, sensitive, convenient and stable approach for clinical diagnosis of diabetes and certain liver diseases. Overall, our findings presented a significant contribution to the field of biomedical research, opening up new possibilities for improved diagnosis and monitoring of diabetes and liver diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由密西根Clavibacter引起的细菌性溃疡病是对番茄种植的重大威胁,导致巨大的经济损失和全球粮食不安全。感染的特征是叶子上白色凸起的病变,茎,和果实在静脉之间有黄色到棕褐色的斑块,边缘坏死.在以前的研究中已经报道了几种农业化学物质来控制这种疾病,但这些不是生态友好的。因此,本研究旨在使用绿色制造的银纳米颗粒(AgNps)控制番茄中的细菌性溃疡病。利用辣木叶提取物作为还原剂和稳定剂合成了纳米银颗粒(AgNPs)。合成的AgNPs使用紫外可见光谱进行表征,扫描电子显微镜(SEM),X射线衍射(XRD)能量色散X射线(EDX),和傅里叶变换红外光谱(FTIR)。FTIR显示在绿色制造的AgNP中存在生物活性化合物,并且UV-可见光谱证实在350nm至355nm范围内的表面等离子体共振(SPR)带。SEM显示矩形段融合在一起,和XRD证实了合成的AgNP的结晶性质。金属银离子的存在通过EDX检测器证实。将不同浓度(10、20、30和40ppm)的绿色制造的AgNPs外源施用于番茄,然后以不同的天数间隔施用Clavibactermichilsis接种物,以记录细菌性溃疡病的发病率。发现AgNPs的最佳浓度为30µg/mg,对形态学表现出最有利的影响(芽长度,根长,植物新鲜和干重,根鲜重和干重)和生理参数(叶绿素含量,膜稳定性指数,和相对含水量)以及生化参数(脯氨酸,总可溶性糖和过氧化氢酶活性)。这些发现表明,通过绿色制造的AgNP增加酶活性和非酶活性,生物胁迫显着降低。这项研究标志着第一个生物相容性方法,用于评估绿色制造的AgNPs在增强受细菌性溃疡影响的番茄植物的健康方面的潜力,并建立了有效的管理策略。这是第一项研究表明,来自辣木叶片提取物的低浓度绿色合成纳米银(AgNPs)对密歇根Clavibacter的活性是一种有效且环保的替代方法,用于管理番茄作物中的细菌性溃疡病。
    Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰腺癌是最具侵袭性的癌症之一,和治疗选择是有限的。一种治疗方法是使用纳米颗粒将活性剂直接递送至胰腺癌细胞。纳米粒子可以被设计为特异性靶向癌细胞,尽量减少对健康组织的损害。银纳米粒子具有独特的吸收光的能力,尤其是在近红外(NIR)区域。在这项研究中,合成了用IgG分子官能化的银纳米颗粒,并将其施用至胰腺癌细胞系。随后,使用2W808nm激光对细胞进行光激发,并在PANC-1胰腺癌细胞系中进一步检查。流式细胞术和共聚焦显微镜结合免疫化学染色检测光激发银纳米颗粒与胰腺癌细胞的相互作用。基于IgG功能化银纳米颗粒的光热疗法在胰腺癌中诱导高尔基体功能障碍,导致caspase-3凋亡途径的激活并最终导致细胞凋亡。这些发现表明,我们提出的IgG纳米颗粒激光治疗可能成为胰腺癌治疗的新方法。
    Pancreatic cancer is one of the most aggressive forms of cancer, and treatment options are limited. One therapeutic approach is to use nanoparticles to deliver the active agent directly to pancreatic cancer cells. Nanoparticles can be designed to specifically target cancer cells, minimizing damage to healthy tissues. Silver nanoparticles have the unique ability to absorb light, especially in the near-infrared (NIR) region. In this study, silver nanoparticles functionalized with IgG molecules were synthesized and administered to pancreatic cancer cell lines. Subsequently, the cells were photo-excited using a 2 W 808 nm laser and further examined in PANC-1 pancreatic cancer cell lines. Flow cytometry and confocal microscopy combined with immunochemical staining were used to examine the interaction between photo-excited silver nanoparticles and pancreatic cancer cells. The photothermal therapy based on IgG-functionalized silver nanoparticles in pancreatic cancer induces dysfunction in the Golgi apparatus, leading to the activation of the caspase-3 apoptotic pathway and ultimately resulting in cellular apoptosis. These findings suggest that our proposed IgG nanoparticle laser treatment could emerge as a novel approach for the therapy of pancreatic cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号