Silver

银色
  • 文章类型: Journal Article
    我们报道了带有螯合二齿N-杂环卡宾的银配合物的合成,在NHC单元的咪唑部分的末端位置具有各种取代。长脂肪族取代基在配合物的合成效率方面被证明是有益的。与以前报道的甲基取代相比。配合物表现出对KA2偶联反应的优异适用性,提供产率高达95%的含季碳炔丙基胺,在无溶剂条件下。该方法对各种基材具有很高的耐受性,包括天然存在的酮,强调它的实用性。据我们所知,这代表了在KA2偶联中首次使用定义明确的银物种,标志着该领域的进步。
    We report a synthesis of silver complexes bearing chelating bidentate N-heterocyclic carbene, with various substitutions at the terminal positions of the imidazole moiety of the NHC units. The long aliphatic substituents proved to be beneficial in terms of the synthetic efficiency of the complexes, compared to previously reported methyl substitution. The complexes demonstrated excellent suitability for the KA2 coupling reaction, providing quaternary carbon-containing propargylic amines in yields up to 95%, under solvent-free conditions. The method showed high tolerance for a wide range of substrates, including naturally occurring ketones, underscoring its practicality. To our knowledge, this represents the first use of a well-defined silver species in KA2 coupling, marking an advancement in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发特殊纺织品(例如,用于医院的患者)属性,特殊的抗菌和抗癌,是当前工作的主要目标。开发的纺织品是通过天然(非环境毒性)颜料(由微生物AgNP修饰的黑色素)的新型配方染色后生产的。选择登录号为KX753680.1的轮链霉菌分离物OSh10作为棕色天然色素的优良生产者。通过优化过程,在3种培养基上生长测试菌株后观察到一些不同的色素颜色。葡萄糖和麦芽提取物增强细菌产生红黑色。然而,甘油为主要碳源,NaNO3和天冬酰胺为氮源被认为是生产棕色色素的最佳方法。在另一种情况下,淀粉作为多糖是生产深绿色色素的最佳碳。蛋白胨和NaNO3是生产深绿色色素的最佳氮源。微生物AgNP由尖孢镰刀菌产生,大小为7-21nm,形状是球形的。这些纳米颗粒用于生产颜料-纳米复合材料,以改善其有前途的性能。记录了纳米颗粒的抗菌性和纳米复合材料对纺织品染色对多重耐药病原体的抑制作用。新型纳米复合材料改善了颜料的染色作用和纺织性能。生产的纺织品对皮肤癌细胞具有抗癌活性,对正常皮肤细胞具有非细胞毒性可检测的作用。获得的结果表明这些纺织品在医院患者衣服中的应用。
    Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments\' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients\' clothes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物制剂作为纳米粒子制造的有效生态友好方法正受到关注,真菌认为该领域有前途的药物。在目前的研究中,两种真菌(Embellisiaspp。和金曲霉属。)从沙特阿拉伯的沙漠土壤中分离出来,并使用18SrRNA基因测序进行鉴定,然后用作制造银纳米颗粒(AgNP)的生物介质。Myco合成的AgNPs使用紫外-可见光谱法进行表征,透射电子显微镜,傅里叶变换红外光谱和动态光散射技术。它们对大肠杆菌的抗菌活性,铜绿假单胞菌,金黄色葡萄球菌,并对肺炎克雷伯菌进行了调查。在心房中检测它们可能的抗菌机制,对通过myco合成的AgNP处理的肺炎克雷伯菌进行十二烷基硫酸钠(SDS-PAGE)和TEM分析。所制造材料的检测特性表明两种测试真菌菌株成功制造具有相同范围的平均尺寸直径和不同PDI的AgNP的能力。Embellisiaspp的效率。与红曲霉属相比,AgNPs具有更高的抗菌活性。然而,据报道,两者都表明抗菌功效。观察到治疗后肺炎克雷伯菌蛋白质谱的变化和超微结构变化。目前的结果表明,直接应用真菌,提供有效的AgNPs的简单和可持续的方法。
    Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转铁蛋白(TRF),被认为是糖蛋白临床生物标志物和治疗靶标,其浓度适用于疾病诊断和治疗监测。因此,这项研究开发了具有pH响应性的硼酸亲和磁性表面分子印迹聚合物(B-MMIPs)作为TRF的“捕获探针”,具有与抗体相似的高亲和力,解离常数为(3.82±0.24)×10-8M,显示7倍的可重用性。以多巴胺(DA)和3-氨基苯基硼酸(APBA)为双单体合成的自共聚印迹层避免了非特异性结合位点,并具有出色的吸附性能。以具有分支尖端“热点”结构的金纳米星(AuNS)为核心,用生物识别元素4-巯基苯基硼酸(MPBA)官能化的银涂层AuNS用作表面增强拉曼散射(SERS)纳米标签(AuNS@Ag-MPBA)来标记TRF,从而构建了双硼酸亲和“三明治”SERS生物传感器(B-MMIPs-TRF-SERS纳米标签),用于TRF的高灵敏度检测。SERS生物传感器对TRF的检测极限为0.004ng/mL,并将其应用于加标血清样品证实了其可靠性和可行性,证明了临床TRF检测的巨大潜力。此外,本研究中设计的SERS生物传感器在稳定性方面具有优势,检测速度(40分钟),和成本效率。用于SERS检测的便携式拉曼仪器满足即时测试的要求。
    Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the \"capture probe\" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip \"hot spot\" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity \"sandwich\" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    银(Ag)的回收对生态保护至关重要,人类健康和经济效益。由于吸附剂的可接近位点不足,从废水中有效捕获Ag(I)仍然具有挑战性。在这里,开发了一种酰氯介导的策略来合成罗丹宁(Rd)修饰的UiO-66衍生物,用于Ag(I)吸附。得益于Rd的高接枝密度,最佳的Rd修饰的UiO-66-NH2(UiO-66-NH2@20Rd)具有超高的吸收能力(最大容量为923.9mg·g-1)和对Ag(I)的选择性(最大选择性系数为1665.52)。在UiO-66-NH2@20Rd上,几乎90%的Ag(I)可以在一分钟内被捕获,并且即使在六个循环之后仍保持98.9%的去除率。此外,固定床柱测试表明,可以有效处理约21,780床体积的Ag(I)模拟废水,表明有很大的实际应用前景。机理研究表明,出色的性能可归因于Ag(I)在致密的罗丹宁位点上的吸附和还原的协同作用。这项研究强调,这种一般策略可以为各种功能吸附材料提供有价值的途径。
    Silver (Ag) recovery is essential for ecological protection, human health and economic benefits. Effective capture of Ag(I) from wastewater is still challenging due to insufficient accessible sites of adsorbents. Herein, an acyl chloride-mediated strategy is developed to synthesize rhodanine (Rd) modified UiO-66 derivatives for Ag(I) adsorption. Benefitting from the high grafting density of Rd, the optimal Rd-modified UiO-66-NH2 (UiO-66-NH2@20Rd) features an ultra-high uptake capacity (maximum capacity of 923.9 mg·g-1) and selectivity (maximum selectivity coefficient of 1665.52) for Ag(I). Almost 90 % of Ag(I) could be captured in one minute over UiO-66-NH2@20Rd and maintained a removal rate of 98.9 % even after six cycles. Moreover, a fixed-bed column test demonstrates that approximately 21,780 bed volumes of Ag(I) simulated wastewater can be effectively treated, indicating great promise for practical application. Mechanism investigation illustrates that outstanding performance can be attributed to the synergistic effect of Ag(I) adsorption and reduction on dense rhodanine sites. This study highlights that such a general strategy can provide a valuable avenue toward various functional adsorption materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植入物广泛用于骨科和牙科科学领域。钛(TI)及其合金已成为应用最广泛的植入材料,但植入物相关感染仍然是植入物手术后常见且严重的并发症.此外,钛表现出生物惰性,防止植入物和骨组织强烈结合,并可能导致植入物松动和脱落。因此,预防植入物感染和提高其骨诱导能力是重要目标。
    研究纳米银/聚乳酸乙醇酸(NSPTICU)涂层钛铜合金植入物的抗菌活性和骨诱导能力,为抑制植入物相关感染和促进骨整合提供新的途径。
    我们首先通过研究MC3T3-E1细胞的增殖和分化来检查NSPTICU植入物的体外成骨能力。此外,通过显微计算机断层扫描(micro-CT)研究了NSPTICU植入物诱导SD大鼠成骨活性的能力,苏木精-伊红(HE)染色,masson染色,免疫组织化学和范吉森(VG)染色。用革兰氏阳性金黄色葡萄球菌(Sa)和革兰氏阴性大肠杆菌(E。大肠杆菌)细菌。Sa被用作试验细菌,通过粗视标本采集研究了NSPTICU植入大鼠体内的抗菌能力,细菌菌落计数,HE染色和Giemsa染色。
    茜素红染色,碱性磷酸酶(ALP)染色,实时定量聚合酶链反应(qRT-PCR)和蛋白质印迹分析显示,NSPTICU促进MC3T3-E1细胞的成骨分化。体外抗菌结果表明,NSPTICU植入物表现出更好的抗菌性能。动物实验表明,NSPTICU可抑制炎症反应,促进骨缺损的修复。
    NSPTICU具有出色的抗菌和骨诱导能力,骨缺损的治疗具有广阔的应用前景。
    UNASSIGNED: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals.
    UNASSIGNED: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration.
    UNASSIGNED: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining.
    UNASSIGNED: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects.
    UNASSIGNED: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2,7-芴酮连接的双(6-咪唑并[1,5-a]吡啶鎓)盐H2-1(PF6)2与Ag2O在CH3CN中反应,生成[2]连环烷[Ag4(1)4](PF6)4。[2]连环烷在DMF中重排以产生两个金属大环[Ag2(1)2](PF6)2。2,7-芴酮桥接的双-(咪唑鎓)盐H2-L(PF6)2(L=2a,2b)与Ag2O在CH3CN中反应,生成金属色环[Ag2(L)2](PF6)2,芴酮环之间的晶面间距太小,无法形成[2]连环烷。通过X射线晶体学观察了芴酮基团之间的分子内和分子间p··p相互作用。强扭结的2,7-芴酮桥连的双(5-咪唑并[1,5-a]吡啶鎓)盐H2-4(PF6)2与Ag2O反应生成[Ag2(4)(CN)](PF6),而四核组装[Ag4(4)2(CO3)](PF6)2在K2CO3存在下获得。
    The 2,7-fluorenone-linked bis(6-imidazo[1,5-a]pyridinium) salt H2-1(PF6)2 reacts with Ag2O in CH3CN to yield the [2]catenane [Ag4(1)4](PF6)4. The [2]catenane rearranges in DMF to yield two metallamacrocycles [Ag2(1)2](PF6)2. 2,7-Fluorenone-bridged bis-(imidazolium) salt H2-L(PF6)2 (L = 2a, 2b) react with Ag2O in CH3CN to yield metallamacrocycles [Ag2(L)2](PF6)2 with interplanar distances between the fluorenone rings too small for [2]catenane formation. Intra- and intermolecular p···p interactions between the fluorenone groups were observed by X-ray crystallography. The strongly kinked 2,7-fluorenone bridged bis(5-imidazo[1,5-a]pyridinium) salt H2-4(PF6)2 reacts with Ag2O to yield [Ag2(4)(CN)](PF6) while the tetranuclear assembly [Ag4(4)2(CO3)](PF6)2 was obtained in the presence of K2CO3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨折被认为是导致严重并发症的医疗紧急情况。
    本研究旨在描述Ag-NPs-FG对兔骨折愈合的加速作用。
    用胡芦巴(FG)还原银NPs(AgNPs),装入淀粉凝胶基质中,并研究了它们的形态,尺寸,和收费。40只成年雄性兔随机组成4组。在每只兔的右胫骨的近端干meta处产生3.5mm直径的骨缺损。第1-4组注射安慰剂生理盐水,AgNPs-FG,普通凝胶,和骨缺损区的FG凝胶,分别。术后8周根据影像学评估愈合情况,骨转换标记,和组织病理学检查。
    获得的AgNPs-FG为淡红色,球形,吸光度为423nm,尺寸为118.0±1.7nm,和-7.8±0.518mV的表面电荷。制备的AgNPs-FG水凝胶清晰,半透明,和同质的。pH值为6.55-6.5±0.2,粘度为4,000和1,875cPs,FG和AgNPs-FG水凝胶的铺展性分别为1.6±0.14和2.0±0.15,分别。与其他治疗组相比,第2组的放射学结合量表显着改善(p<0.05),骨转换标志物显着增加(p<0.05)。组织病理学检查显示,第2组和第4组在术后第28天形成成熟骨。
    载有AgNPs-FG水凝胶的胶体纳米制剂可能是加速兔胫骨骨愈合过程的有前途的制剂。
    UNASSIGNED: A fracture is considered a medical emergency leading to considerable complications.
    UNASSIGNED: This study aimed to describe the accelerating action of Ag-NPs-FG on fracture healing in rabbits.
    UNASSIGNED: Silver NPs (AgNPs) were reduced with fenugreek (FG), loaded into a starch gel base, and investigated for their morphology, size, and charge. Four equal groups were randomly formed of 40 adult male rabbits. A 3.5 mm diameter bone defect was created at the proximal metaphysis of the right tibia in each rabbit. Groups 1-4 were injected with placebo saline, AgNPs-FG, plain gel, and FG-gel at the bone defect zone, respectively. The healing was assessed for 8 weeks postoperatively based on the radiographic, bone turnover markers, and histopathological examinations.
    UNASSIGNED: The AgNPs-FG was obtained as a faint reddish color, spherical in shape, with an absorbance of 423 nm, a size of 118.0 ± 1.7 nm, and a surface charge of -7.8 ± 0.518 mV. The prepared AgNPs-FG hydrogel was clear, translucent, and homogenous. The pH values were 6.55-6.5 ± 0.2, the viscosity of 4,000 and 1,875 cPs, and spreadability of 1.6 ± 0.14 and 2.0 ± 0.15 for both FG and AgNPs-FG hydrogel, respectively. The radiographic union scale was significantly (p < 0.05) improved in group 2 with a significant (p < 0.05) increase in bone turnover markers was found in comparison to other treated groups. Histopathological examination revealed the formation of mature bone on the 28th postoperative day in groups 2 and 4.
    UNASSIGNED: Colloidal nano-formulation of AgNPs-FG loaded hydrogel could be a promising formulation to accelerate rabbits\' tibial bone healing process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一个高度敏感的,建立了基于磁性Fe3O4@mTiO2(M-TiO2)纳米复合材料与SERRS的选择性和可回收组氨酸检测方法。介孔M-TiO2纳米粒子用4-氨基苯硫酚官能化,然后在5分钟内通过偶氮偶联反应与组氨酸偶联,产生相应的偶氮化合物。由于在532nm激发激光下AgNP的分子共振效应和等离子体效应,偶氮产品的强而特异的SERRS响应允许使用负载有AgNP的M-TiO2设备对组氨酸进行超灵敏和选择性的检测。随着M-TiO2的磁富集,灵敏度进一步提高。检出限(LOD)低至8.00×10-12mol/L。M-TiO2证明了在没有任何样品预处理的情况下对人尿液中组氨酸测定的适用性。此外,由于TiO2辅助和等离子体激元增强的光催化作用,M-TiO2装置可以循环3个循环,偶氮产物在紫外线照射下发生光降解。总之,基于偶氮偶合和SERRS光谱合成了一种多功能和可回收的M-TiO2器件,用于超灵敏和特异性组氨酸传感。此外,拟议的系统证明了在食品安全领域多重测定有毒化合物的潜力,工业生产和环境保护,这得益于SERRS的指纹特性和通用性。
    A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling reaction in 5 min, producing the corresponding azo compound. The strong and specific SERRS response of the azo product allowed for ultrasensitive and selective detection for histidine with an M-TiO2 device loaded with Ag NPs due to the molecular resonance effect and plasmonic effect of Ag NPs under a 532 nm excitation laser. The sensitivity was further enhanced with the magnetic enrichment of M-TiO2. The limit of detection (LOD) was as low as 8.00 × 10-12 mol/L. The M-TiO2 demonstrated applicability towards histidine determination in human urine without any sample pretreatment. Additionally, the M-TiO2 device can be recycled for 3 cycles with the photodegradation of the azo product under UV irradiation due to TiO2-assisted and plasmon-enhanced photocatalysis. In summary, a multifunctional and recyclable M-TiO2 device was synthesized based on azo coupling and SERRS spectroscopy for ultra-sensitive and specific histidine sensing. In addition, the proposed system demonstrated the potential for the multiplex determination of toxic compounds in the fields of food safety, industrial production and environmental protection, which benefit from the fingerprint property and universality of SERRS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶液处理的石墨烯有利于大规模,低成本生产。然而,它的横向尺寸小,可变层厚度,和不可控的氧化水平仍然制约着其广泛的电子应用。在这项研究中,介绍了一种新开发的电化学剥离工艺,并通过界面自组装制备了石墨烯贴片膜电极。我们能够通过电压和电解质调制来最大程度地减少剥离过程中石墨烯胶体的劣化,但是石墨烯电极的补片结构仍然显示出低电导率,具有许多片间连接。因此,我们确定了通过直流电沉积在多层堆叠的石墨烯膜上生长完全网络银结构的最佳条件,这些银-石墨烯复合膜显示出显着降低的石墨烯胶体贴膜表面电阻。
    Solution-processed graphene is beneficial for large-scale, low-cost production. However, its small lateral size, variable layer thickness, and uncontrollable oxidation level still restrict its widespread electronic application. In this study, a newly developed electrochemical exfoliation process was introduced, and a graphene-patched film electrode was fabricated by interfacial self-assembly. We were able to minimize the deterioration of graphene colloids during exfoliation by voltage and electrolyte modulation, but the patched structure of the graphene electrode still showed low conductivity with numerous inter-sheet junctions. Therefore, we determined the optimal conditions for the growth of fully networked silver structures on the multi-stacked graphene film by direct current electro-deposition, and these silver-graphene composite films showed significantly lowered graphene-colloid-patched film surface resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号