WRKY

WRKY
  • 文章类型: Journal Article
    为了应对生物和非生物胁迫,WRKY基因家族在植物生长发育中起着至关重要的作用。本研究集中于Phoebebournei,涉及WRKY基因家族成员的全基因组鉴定,阐明它们的分子进化特征,以及在不同非生物胁迫条件下它们的表达谱的全面作图。共鉴定出60个WRKY基因家族成员,它们的系统发育分类揭示了三个不同的群体。保守的基序分析强调了基序1和基序2在大多数PbWRKY蛋白中的显著保守性,同一类蛋白质共享类似的基因结构。此外,对顺式作用元件和蛋白质相互作用网络的研究揭示了几个基因与P.bournei的非生物胁迫反应有关。转录组数据用于分析WRKY家族成员在干旱和淹水条件下的表达模式。随后通过定量实时PCR(RT-qPCR)实验进行验证。值得注意的是,PbWRKY55在干旱胁迫下表现出显着的表达调节;PbWRKY36对淹水胁迫反应显着;在干旱和淹水胁迫下,PbWRKY18,PbWRKY38和PbWRKY57表现出表达变化。这项研究揭示了PbWRKY候选基因,这些基因可能在增强P.bournei的非生物胁迫恢复力中起关键作用。这些发现提供了宝贵的见解和知识,可以指导旨在理解和解决该物种非生物胁迫影响的进一步研究。
    In response to biotic and abiotic stresses, the WRKY gene family plays a crucial role in plant growth and development. This study focused on Phoebe bournei and involved genome-wide identification of WRKY gene family members, clarification of their molecular evolutionary characteristics, and comprehensive mapping of their expression profiles under diverse abiotic stress conditions. A total of 60 WRKY gene family members were identified, and their phylogenetic classification revealed three distinct groups. A conserved motif analysis underscored the significant conservation of motif 1 and motif 2 among the majority of PbWRKY proteins, with proteins within the same class sharing analogous gene structures. Furthermore, an examination of cis-acting elements and protein interaction networks revealed several genes implicated in abiotic stress responses in P. bournei. Transcriptomic data were utilized to analyze the expression patterns of WRKY family members under drought and waterlogged conditions, with subsequent validation by quantitative real-time PCR (RT-qPCR) experiments. Notably, PbWRKY55 exhibited significant expression modulation under drought stress; PbWRKY36 responded prominently to waterlogging stress; and PbWRKY18, PbWRKY38, and PbWRKY57 demonstrated altered expression under both drought and waterlogging stresses. This study revealed the PbWRKY candidate genes that potentially play a pivotal role in enhancing abiotic stress resilience in P. bournei. The findings have provided valuable insights and knowledge that can guide further research aimed at understanding and addressing the impacts of abiotic stress within this species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    WRKY基因家族广泛分布于植物中,在应激反应中发挥关键作用。然而,棉花中WRKY基因的结构组织和进化动力学尚未完全阐明。在这项研究中,在植物园棉中总共鉴定出112、119、217和222个WRKY基因,灵蒙地棉,陆地棉,和巴巴多斯棉属,分别。这670个WRKY基因被分为七个不同的亚组,并且在染色体上分布不均。保守图案的检查,域,顺式作用元素,和基因结构共同强调了棉花中WRKY基因家族的进化保守性和分歧性。同质性和共线性的分析进一步证实了扩张的实例,重复,和棉花进化过程中WRKY基因之间的丢失事件。此外,GhWRKY31转基因拟南芥在干旱和盐胁迫下表现出更高的发芽率和更长的根长。在棉花中沉默GhWRKY31导致ABA水平降低,脯氨酸,POD,和SOD,随着应激反应基因表达下调。酵母单杂交和分子对接试验证实了GhWRKY31与GhABF1、GhDREB2和GhRD29的W盒的结合能力。这些发现共同提供了对棉花WRKYs进化模式的系统和全面的见解,提出了一个合适的调控框架,用于开发具有增强的抗旱性和盐分胁迫能力的棉花品种。
    The WRKY gene family is ubiquitously distributed in plants, serving crucial functions in stress responses. Nevertheless, the structural organization and evolutionary dynamics of WRKY genes in cotton have not been fully elucidated. In this study, a total of 112, 119, 217, and 222 WRKY genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. These 670 WRKY genes were categorized into seven distinct subgroups and unequally distributed across chromosomes. Examination of conserved motifs, domains, cis-acting elements, and gene architecture collectively highlighted the evolutionary conservation and divergence within the WRKY gene family in cotton. Analysis of synteny and collinearity further confirmed instances of expansion, duplication, and loss events among WRKY genes during cotton evolution. Furthermore, GhWRKY31 transgenic Arabidopsis exhibited heightened germination rates and longer root lengths under drought and salt stress. Silencing GhWRKY31 in cotton led to reduced levels of ABA, proline, POD, and SOD, along with downregulated expression of stress-responsive genes. Yeast one-hybrid and molecular docking assays confirmed the binding capacity of GhWRKY31 to the W box of GhABF1, GhDREB2, and GhRD29. The findings collectively offer a systematic and comprehensive insight into the evolutionary patterns of cotton WRKYs, proposing a suitable regulatory framework for developing cotton cultivars with enhanced resilience to drought and salinity stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    叶面色素沉着模式因植物种类和生长条件而异。在这项研究中,我们利用高光谱成像来评估营养胁迫下苔藓植物中的叶面色素沉着,并确定相关的遗传因素。使用奇异值分解(SVD)进行特征选择,我们定量由磷酸盐缺乏引起的颜色变化,硝酸盐,镁,钙,和铁。伪彩色thallus图像显示,破坏MpWRKY10会导致不规则的色素沉着,并伴有奥罗尼丁的积累。转录组分析显示MpWRKY10在磷酸盐缺乏过程中调节苯丙素途径酶和R2R3-MYB转录因子,在色素积累之前MpMYB14上调。MpWRKY10在老年人中下调,缺乏磷酸盐但在年轻的thalli中维持的色素thalli,它抑制色素沉着基因。由于衰老,色素沉着的thalli中没有这种下调。比较转录组分析表明,在红叶莴苣中,WRKY和MYB在营养响应和色素沉着中的作用相似,暗示在营养缺乏下控制叶面色素沉着模式的保守遗传因素。
    Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    玉米(ZeamaysL.)是一种重要的粮食作物,在工业和农业中具有广泛的用途。在其生长周期中的干旱胁迫会大大降低玉米作物的产量和品质。然而,玉米应对干旱胁迫的分子机制尚不清楚。在这项工作中,WRKY转录因子编码基因,从干旱处理的玉米叶片中筛选出ZmWRKY30并进行表征。通过脱水处理诱导ZmWRKY30基因表达。ZmWRKY30蛋白定位于细胞核并在酵母中显示出反式激活活性。与野生型(WT)植物相比,过表达ZmWRKY30的拟南芥系表现出显着增强的干旱胁迫耐受性,生存率的提高证明了这一点,通过超氧化物歧化酶(SOD)增加抗氧化酶活性,过氧化物酶(POD),和过氧化氢酶(CAT),脯氨酸含量升高,干旱胁迫处理后记录的脂质过氧化降低。相比之下,突变(Mu)中断的ZmWRKY30纯合突变体(zmwrky30)对干旱胁迫比其空分离(NS)更敏感,以存活率下降为特征,降低抗氧化酶活性(SOD,POD,和CAT)和脯氨酸含量,以及丙二醛积累的增加。RNA-Seq分析进一步揭示,在干旱条件下,玉米中ZmWRKY30基因的敲除影响了与活性氧(ROS)有关的基因的表达,脯氨酸,和肌醇代谢.同时,zmwrky30突变体在干旱胁迫下表现出叶片中肌醇含量的显着下调。合并,我们的结果表明ZmWRKY30积极调节玉米对缺水的反应。本研究为抗旱玉米育种提供了潜在的靶基因。
    Maize (Zea mays L.) is an important food crop with a wide range of uses in both industry and agriculture. Drought stress during its growth cycle can greatly reduce maize crop yield and quality. However, the molecular mechanisms underlying maize responses to drought stress remain unclear. In this work, a WRKY transcription factor-encoding gene, ZmWRKY30, from drought-treated maize leaves was screened out and characterized. ZmWRKY30 gene expression was induced by dehydration treatments. The ZmWRKY30 protein localized to the nucleus and displayed transactivation activity in yeast. Compared with wild-type (WT) plants, Arabidopsis lines overexpressing ZmWRKY30 exhibited a significantly enhanced drought stress tolerance, as evidenced by the improved survival rate, increased antioxidant enzyme activity by superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), elevated proline content, and reduced lipid peroxidation recorded after drought stress treatment. In contrast, the mutator (Mu)-interrupted ZmWRKY30 homozygous mutant (zmwrky30) was more sensitive to drought stress than its null segregant (NS), characterized by the decreased survival rate, reduced antioxidant enzyme activity (SOD, POD, and CAT) and proline content, as well as increased malondialdehyde accumulation. RNA-Seq analysis further revealed that, under drought conditions, the knockout of the ZmWRKY30 gene in maize affected the expression of genes involved in reactive oxygen species (ROS), proline, and myo-inositol metabolism. Meanwhile, the zmwrky30 mutant exhibited significant downregulation of myo-inositol content in leaves under drought stress. Combined, our results suggest that ZmWRKY30 positively regulates maize responses to water scarcity. This work provides potential target genes for the breeding of drought-tolerant maize.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    镉(Cd)是一种对生物体剧毒的重金属。土壤Cd污染已成为世界范围内的严重问题,对作物生产和人类健康构成严重威胁。当植物被Cd毒害时,他们的生长发育受到抑制,叶绿体严重受损,呼吸和光合作用受到负面影响。因此,阐明植物对Cd耐受性的分子机制很重要。转录因子可以与特定的植物顺式作用基因结合。经常报道转录因子参与涉及植物生长和发育的各种信号通路。它们在抵抗环境压力因素中的作用,特别是Cd,不应该被低估。多个转录因子家族在调控植物对Cd胁迫的抗性中的作用已被广泛证明。在这次审查中,我们总结了五个主要的转录因子家族-WRKY,ERF,MYB,bHLH,和bZIP-in植物对Cd胁迫的抗性,为将来使用分子技术解决Cd污染问题提供有用的信息。
    Cadmium (Cd) is a heavy metal highly toxic to living organisms. Cd pollution of soils has become a serious problem worldwide, posing a severe threat to crop production and human health. When plants are poisoned by Cd, their growth and development are inhibited, chloroplasts are severely damaged, and respiration and photosynthesis are negatively affected. Therefore, elucidating the molecular mechanisms that underlie Cd tolerance in plants is important. Transcription factors can bind to specific plant cis-acting genes. Transcription factors are frequently reported to be involved in various signaling pathways involved in plant growth and development. Their role in the resistance to environmental stress factors, particularly Cd, should not be underestimated. The roles of several transcription factor families in the regulation of plant resistance to Cd stress have been widely demonstrated. In this review, we summarize the mechanisms of five major transcription factor families-WRKY, ERF, MYB, bHLH, and bZIP-in plant resistance to Cd stress to provide useful information for using molecular techniques to solve Cd pollution problems in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:伊昌树(柑橘),一种野生多年生植物,是一种耐寒的植物。WRKY转录因子是植物生长发育和非生物胁迫反应的关键调节因子。然而,在冷胁迫下,中国的WRKY基因(CiWRKY)及其表达模式尚未得到彻底研究,阻碍了我们对它们在耐寒性中的作用的理解。
    结果:在这项研究中,根据系统发育分析,在中国的C.changensis基因组中鉴定出的总共52个CiWRKY基因被分为三个主要组和五个亚组。母题特征的综合分析,保守域,并进行了基因结构。分段复制在CiWRKY基因家族扩展中起重要作用。顺式作用元件分析揭示了大多数CiWRKYs启动子中存在各种应激反应元件。基因本体论(GO)分析和蛋白质-蛋白质相互作用预测表明,CiWRKYs在发育和应激反应的调节中起着至关重要的作用。表达谱分析表明14个CiWRKY在冷胁迫下基本上被诱导。病毒诱导的基因沉默(VIGS)检测证实CiWRKY31,冷诱导的WRKYs之一,在调节耐寒性方面发挥积极作用。
    结论:系统分析了CiWRKYs的序列和蛋白质性质。在52个CiWRKY基因中,有14个成员表现出冷反应表达模式,CiWRKY31被证实是耐寒性的正调节剂。这些发现为将来的研究铺平了道路,以了解CiWRKYs在耐寒性中的分子功能,并有助于解开可用于柑橘耐寒性工程的WRKYs。
    BACKGROUND: Ichang papeda (Citrus ichangensis), a wild perennial plant of the Rutaceae family, is a cold-hardy plant. WRKY transcription factors are crucial regulators of plant growth and development as well as abiotic stress responses. However, the WRKY genes in C. ichangensis (CiWRKY) and their expression patterns under cold stress have not been thoroughly investigated, hindering our understanding of their role in cold tolerance.
    RESULTS: In this study, a total of 52 CiWRKY genes identified in the genome of C. ichangensis were classified into three main groups and five subgroups based on phylogenetic analysis. Comprehensive analyses of motif features, conserved domains, and gene structures were performed. Segmental duplication plays a significant role in the CiWRKY gene family expansion. Cis-acting element analysis revealed the presence of various stress-responsive elements in the promoters of the majority of CiWRKYs. Gene ontology (GO) analysis and protein-protein interaction predictions indicate that the CiWRKYs exhibit crucial roles in regulation of both development and stress response. Expression profiling analysis demonstrates that 14 CiWRKYs were substantially induced under cold stress. Virus-induced gene silencing (VIGS) assay confirmed that CiWRKY31, one of the cold-induced WRKYs, functions positively in regulation of cold tolerance.
    CONCLUSIONS: Sequence and protein properties of CiWRKYs were systematically analyzed. Among the 52 CiWRKY genes 14 members exhibited cold-responsive expression patterns, and CiWRKY31 was verified to be a positive regulator of cold tolerance. These findings pave way for future investigations to understand the molecular functions of CiWRKYs in cold tolerance and contribute to unravelling WRKYs that may be used for engineering cold tolerance in citrus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    WRKY基因的转录因子在植物生长中起着至关重要的作用,应激反应,和代谢产物的生物合成。灯盏细辛,一种传统的中草药,富含类黄酮,几个世纪以来一直被用来治疗心脑血管疾病。然而,在灯盏细辛中调节类黄酮生物合成的WRKY转录因子仍然未知。在这项研究中,通过对灯盏细辛菌进行全面的全基因组鉴定,共预测了75个EbWRKY转录因子,并研究了每个EbWRKY基因的染色体定位.RNA测序揭示了74个预测的EbWRKY基因对外源脱落酸(ABA)的瞬时反应,水杨酸(SA),和赤霉素3(GA3)治疗4小时后。相比之下,GA3处理4h后,参与类黄酮生物合成的关键结构基因的表达增加。然而,在12h时,叶片中类黄酮代谢产物的含量显着增加。qRT-PCR结果表明,EbWRKY11,EbWRKY30,EbWRKY31,EbWRKY36和EbWRKY44转录因子的表达模式与11个参与类黄酮生物合成的结构基因具有高度相似性。在参与灯盏乙素生物合成的关键基因和候选WRKYs之间进行蛋白质-DNA相互作用。结果表明,F7GAT与EbWRKY11,EbWRKY36和EbWRKY44相互作用,而EbF6H具有自激活功能。本研究为类黄酮积累机制的调控网络提供了全面的信息,为培育灯盏细辛含量增加的灯盏细辛品种提供有价值的见解。
    The transcription factors of WRKY genes play essential roles in plant growth, stress responses, and metabolite biosynthesis. Erigeron breviscapus, a traditional Chinese herb, is abundant in flavonoids and has been used for centuries to treat cardiovascular and cerebrovascular diseases. However, the WRKY transcription factors that regulate flavonoid biosynthesis in E. breviscapus remain unknown. In this study, a total of 75 EbWRKY transcription factors were predicted through comprehensive genome-wide characterization of E. breviscapus and the chromosomal localization of each EbWRKY gene was investigated. RNA sequencing revealed transient responses of 74 predicted EbWRKY genes to exogenous abscisic acid (ABA), salicylic acid (SA), and gibberellin 3 (GA3) after 4 h of treatment. In contrast, the expression of key structural genes involved in flavonoid biosynthesis increased after 4 h in GA3 treatment. However, the content of flavonoid metabolites in leaves significantly increased at 12 h. The qRT-PCR results showed that the expression patterns of EbWRKY11, EbWRKY30, EbWRKY31, EbWRKY36, and EbWRKY44 transcription factors exhibited a high degree of similarity to the 11 structural genes involved in flavonoid biosynthesis. Protein-DNA interactions were performed between the key genes involved in scutellarin biosynthesis and candidate WRKYs. The result showed that F7GAT interacts with EbWRKY11, EbWRKY36, and EbWRKY44, while EbF6H has a self-activation function. This study provides comprehensive information on the regulatory control network of flavonoid accumulation mechanisms, offering valuable insights for breeding E. breviscapus varieties with enhanced scutellarin content.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甜罗勒(OcimumbasilicumL.)是一种重要的芳香植物,具有很高的食用性和经济价值,广泛分布在包括中国南方在内的许多热带地区。近年来,环境问题,特别是土壤盐渍化,严重限制了甜罗勒的种植和传播。然而,甜罗勒盐应激反应的分子机制尚不清楚。在这项研究中,种子萌发,幼苗生长,在盐胁迫条件下,甜罗勒的叶绿素合成受到抑制。通过比较转录组分析,参与代谢过程的基因模块,氧化反应,植物激素信号,细胞骨架,并筛选出光合作用。此外,还显示了甜罗勒盐处理期间转录因子的景观。此外,WRKY转录因子编码基因的过表达,ObWRKY16和苯丙氨酸解氨酶编码基因,ObPAL2,增强种子萌发,幼苗生长,和存活率,分别,转基因拟南芥,这表明它们可能是创建耐盐甜罗勒品种的重要候选人。我们的数据丰富了甜罗勒中盐反应的研究,并为未来甜罗勒的遗传改良提供了必要的基因资源。
    Sweet basil (Ocimum basilicum L.) is an important aromatic plant with high edibility and economic value, widely distributed in many regions of the tropics including the south of China. In recent years, environmental problems, especially soil salinization, have seriously restricted the planting and spread of sweet basil. However, the molecular mechanism of the salt stress response in sweet basil is still largely unknown. In this study, seed germination, seedling growth, and chlorophyll synthesis in sweet basil were inhibited under salt stress conditions. Through comparative transcriptome analysis, the gene modules involved in the metabolic processes, oxidative response, phytohormone signaling, cytoskeleton, and photosynthesis were screened out. In addition, the landscape of transcription factors during salt treatment in sweet basil was displayed as well. Moreover, the overexpression of the WRKY transcription factor-encoding gene, ObWRKY16, and the phenylalanine ammonia-lyase-encoding gene, ObPAL2, enhanced the seed germination, seedling growth, and survival rate, respectively, of transgenic Arabidopsis, suggesting that they might be important candidates for the creation of salt-tolerant sweet basil cultivars. Our data enrich the study on salt responses in sweet basil and provide essential gene resources for genetic improvements in sweet basil in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    MYB转录因子已与植物中的花青素苷合成和各种颜色表型有关。在苹果,MYB10由于其R6启动子中的小卫星插入而赋予红肉表型,但是R6:MYB10基因型在肉中表现出不同程度的红色色素沉着,提示其他遗传因素的参与。这里,它显示了MdWRKY10,一种通过DNA下拉捕获鉴定的转录因子,与MdMYB10的启动子结合并激活其转录。MdWRKY10与WDR蛋白MdTTG1特异性相互作用,加入苹果MYB-bHLH-WDR(MBW)复合物,显着增强其转录激活活性。通过结构变异分析,在有关R6的相同杂合基因型的杂种种群中,在MdWRKY10等位基因的启动子区域中检测到163bp的InDel,包含MdWRKY10结合用于反式激活的典型W-box元素。这导致MdWRKY10和MdMYB10的转录水平增加,并增强果肉中花青素的合成,在很大程度上解释了R6背景中不同程度的肉红色色素沉着。这些发现揭示了含WRKY的蛋白质复合物在红肉苹果表型形成中的新调节作用,并为控制植物花色苷合成的分子机制提供了更广泛的见解。
    MYB transcription factors have been linked to anthocyanin synthesis and various color phenotypes in plants. In apple, MYB10 confers a red-flesh phenotype due to a minisatellite insertion in its R6 promoter, but R6:MYB10 genotypes exhibit various degrees of red pigmentation in the flesh, suggesting the involvement of other genetic factors. Here, it is shown that MdWRKY10, a transcription factor identified via DNA pull-down trapping, binds to the promoter of MdMYB10 and activates its transcription. MdWRKY10 specifically interacts with the WDR protein MdTTG1 to join the apple MYB-bHLH-WDR (MBW) complex, which significantly enhances its transcriptional activation activity. A 163-bp InDel detected in the promoter region of the alleles of MdWRKY10 in a hybrid population of identical heterozygous genotypes regarding R6 by structural variation analysis, contains a typical W-box element that MdWRKY10 binds to for transactivation. This leads to increased transcript levels of MdWRKY10 and MdMYB10 and enhanced anthocyanin synthesis in the flesh, largely accounting for the various degrees of flesh red pigmentation in the R6 background. These findings reveal a novel regulatory role of the WRKY-containing protein complex in the formation of red flesh apple phenotypes and provide broader insights into the molecular mechanism governing anthocyanin synthesis in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病原体在发病过程中产生并分泌效应蛋白到宿主植物细胞以促进毒力和定殖。如果植物携带识别病原体效应子的抗性(R)蛋白,效应子触发免疫(ETI)被激活,导致强大的免疫反应和过敏反应(HR)。来自丁香假单胞菌pv的二分效应子AvrRps4。pisi在无毒功能方面已经得到了很好的研究。在植物中,AvrRps4被处理成两个部分。AvrRps4的C端片段(AvrRps4C)在萝卜中诱导HR,并被拟南芥中的配对抗性蛋白AtRRS1/AtRPS4识别。这里,我们显示AvrRps4C靶向一组拟南芥WRKY,包括WRKY46,WRKY53,WRKY54和WRKY70,以诱导其毒力功能。的确,AvrRps4C抑制免疫阳性调节因子WRKY54和WRKY54介导的抗性的一般结合和转录活性。AvrRps4C在体外干扰WRKY54与靶基因SARD1的结合活性,表明WRKY54通过AvrRps4C与SARD1启动子隔离。通过AvrRps4C与四个WRKY的相互作用,AvrRps4增强了四个WRKYs的同型/异型复合物的形成,并将它们隔离在细胞质中,从而抑制它们在植物免疫中的功能。一起,我们的结果提供了AvrRps4通过其C末端的详细毒力机制。
    Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv. pisi has been well studied in terms of avirulence function. In planta, AvrRps4 is processed into two parts. The C-terminal fragment of AvrRps4 (AvrRps4C) induces HR in turnip and is recognized by the paired resistance proteins AtRRS1/AtRPS4 in Arabidopsis. Here, we show that AvrRps4C targets a group of Arabidopsis WRKY, including WRKY46, WRKY53, WRKY54, and WRKY70, to induce its virulence function. Indeed, AvrRps4C suppresses the general binding and transcriptional activities of immune-positive regulator WRKY54 and WRKY54-mediated resistance. AvrRps4C interferes with WRKY54\'s binding activity to target gene SARD1 in vitro, suggesting WRKY54 is sequestered from the SARD1 promoter by AvrRps4C. Through the interaction of AvrRps4C with four WRKYs, AvrRps4 enhances the formation of homo-/heterotypic complexes of four WRKYs and sequesters them in the cytoplasm, thus inhibiting their function in plant immunity. Together, our results provide a detailed virulence mechanism of AvrRps4 through its C-terminus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号