Genome editing

基因组编辑
  • 文章类型: Journal Article
    甘蔗,一种重要的经济作物,对世界的糖供应和生物燃料生产原料做出了重大贡献,在全球糖业中发挥着重要作用。然而,可持续生产力受到生物和非生物压力的严重阻碍。基因工程已被用于将有用的基因转移到甘蔗植物中以改善期望的性状,并已成为在不同不利环境条件下维持生长和生产力的基本和应用研究方法。然而,转基因方法的使用仍然存在争议,需要严格的实验方法来应对生物安全挑战。聚集的规则间隔短回文重复(CRISPR)介导的基因组编辑技术正在迅速发展,并可能彻底改变甘蔗生产。这篇综述旨在探索创新的基因工程技术及其在开发对生物和非生物胁迫具有增强抗性的甘蔗品种以生产优良甘蔗品种中的成功应用。
    Sugarcane, a vital cash crop, contributes significantly to the world\'s sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的四十年中,已经构建并积累了大量用于酿酒酵母的重组质粒。希望将重组质粒资源应用于严格的酵母物种组,其中包含越来越多的天然分离株和工业菌株。对组的应用遇到困难。天然分离株和工业菌株完全是原养型和多倍体,而直接应用大多数常规质粒资源在宿主酵母菌株中施加了营养缺陷型突变的先决条件(即,leu2)由选择基因(例如,LEU2)在重组质粒上。为了解决困难,我们旨在通过DNA编辑从属于严格的酵母酵母物种组的酵母菌株中生成leu2突变体。首先,我们通过添加抗生素抗性基因并设计针对LEU2基因的指导序列,修饰了多合一型CRISPR-Cas9质粒pML104,并使其能够在该酵母组中广泛应用.然后,所得的CRISPR-Cas9质粒被利用到属于该组的五个物种的七个菌株中,包括天然分离物,工业,和异源多倍体菌株。在基因中具有设计突变的集落通过将质粒和辅助寡核苷酸引入菌株而成功地出现。本研究中产生的大多数质粒和所得的leu2-突变体将存放在几个存储库组织中。关键词:•靶向LEU2基因的一体化CRISPR-Cas9质粒被设计用于广泛地应用于严格意义的酵母群物种菌株•质粒的应用从包括天然分离物的菌株中产生了leu2突变体,工业,和异源多倍体菌株•容易转化为leu2突变体允许自由获得具有LEU2基因的重组质粒。
    A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    欧洲议会要求EFSA对法国食品署的分析提供科学意见,环境和职业健康与安全(ANSES)附件一欧盟委员会关于通过某些新基因组技术(NGT)获得的植物及其食品和饲料的法规的提案,并修订法规(欧盟)2017/625。转基因生物小组(GMO)评估了ANSES发表的意见,其中侧重于(I)澄清定义和范围的必要性,(ii)等效标准的科学依据,以及(iii)需要考虑第1类NGT工厂的潜在风险。EFSAGMO小组审议了ANSES分析和对欧盟委员会提案附件I标准中使用的各种术语的评论,并讨论了基于EFSAGMO小组先前意见的定义。EFSAGMO小组的结论是,现有的科学文献表明,含有遗传修饰类型和数量的植物作为标准,在欧盟委员会的提案中识别第1类NGT植物确实存在自发突变或随机诱变的结果。因此,在遗传修饰的相似性和潜在风险的相似性方面,将1类NGT植物视为与常规育种植物等效的科学依据。EFSAGMO小组在其先前的意见中没有发现与传统育种技术相比使用NGT相关的任何额外危害和风险。
    EFSA was asked by the European Parliament to provide a scientific opinion on the analysis by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) of Annex I of the European Commission proposal for a regulation \'on plants obtained by certain new genomic techniques (NGTs) and their food and feed, and amending regulation (EU) 2017/625\'. The Panel on genetically modified organisms (GMO) assessed the opinion published by ANSES, which focuses on (i) the need to clarify the definitions and scope, (ii) the scientific basis for the equivalence criteria and (iii) the need to take potential risks from category 1 NGT plants into account. The EFSA GMO Panel considered the ANSES analysis and comments on various terms used in the criteria in Annex I of the European Commission proposal and discussed definitions based on previous EFSA GMO Panel opinions. The EFSA GMO Panel concluded that the available scientific literature shows that plants containing the types and numbers of genetic modifications used as criteria to identify category 1 NGT plants in the European Commission proposal do exist as the result of spontaneous mutations or random mutagenesis. Therefore, it is scientifically justified to consider category 1 NGT plants as equivalent to conventionally bred plants with respect to the similarity of genetic modifications and the similarity of potential risks. The EFSA GMO Panel did not identify any additional hazards and risks associated with the use of NGTs compared to conventional breeding techniques in its previous Opinions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传性视网膜疾病(IRD)包括导致进行性视力损害和失明的多种遗传性疾病。多年来,在理解IRD的潜在分子机制方面已经取得了相当大的进展,为新型治疗干预奠定基础。基因治疗已经成为治疗IRD的一种引人注目的方法,通过靶向基因增强实现了显著的进步。然而,一些挫折和局限性仍然存在,阻碍了IRD基因治疗的广泛临床成功。一个有希望的研究途径是开发新的基因组编辑工具。尖端技术,如CRISPR-Cas9核酸酶,碱基编辑和主要编辑在靶向基因操作中提供了前所未有的精度和效率,提供了克服IRD基因治疗现有挑战的潜力。此外,由于对病毒载体的免疫反应,传统的基因治疗面临着重大挑战,这仍然是实现持久治疗效果的关键障碍。纳米技术已成为寻求优化眼部疾病基因治疗结果的有价值的盟友。具有纳米级精度的纳米颗粒为特定的视网膜细胞提供了改进的基因递送,允许增强的靶向性和降低的免疫原性。在这次审查中,我们讨论了IRD基因治疗的最新进展,并探讨了临床试验中遇到的挫折。我们强调了用于治疗IRD的基因组编辑技术的进步,以及将纳米技术整合到基因传递策略中如何提高基因治疗的安全性和有效性。最终为IRD患者带来希望,并可能为其他眼部疾病的类似进展铺平道路。
    Inherited retinal diseases (IRDs) encompass a diverse group of genetic disorders that lead to progressive visual impairment and blindness. Over the years, considerable strides have been made in understanding the underlying molecular mechanisms of IRDs, laying the foundation for novel therapeutic interventions. Gene therapy has emerged as a compelling approach for treating IRDs, with notable advancements achieved through targeted gene augmentation. However, several setbacks and limitations persist, hindering the widespread clinical success of gene therapy for IRDs. One promising avenue of research is the development of new genome editing tools. Cutting-edge technologies such as CRISPR-Cas9 nucleases, base editing and prime editing provide unprecedented precision and efficiency in targeted gene manipulation, offering the potential to overcome existing challenges in gene therapy for IRDs. Furthermore, traditional gene therapy encounters a significant challenge due to immune responses to viral vectors, which remain crucial obstacles in achieving long-lasting therapeutic effects. Nanotechnology has emerged as a valuable ally in the quest to optimize gene therapy outcomes for ocular diseases. Nanoparticles engineered with nanoscale precision offer improved gene delivery to specific retinal cells, allowing for enhanced targeting and reduced immunogenicity. In this review, we discuss recent advancements in gene therapy for IRDs and explore the setbacks that have been encountered in clinical trials. We highlight the technological advances in genome editing for the treatment of IRDs and how integrating nanotechnology into gene delivery strategies could enhance the safety and efficacy of gene therapy, ultimately offering hope for patients with IRDs and potentially paving the way for similar advancements in other ocular disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    气候变化,特别是干旱和高温胁迫,到2080年,农业生产力可能会削减25.7%,其中玉米受到的打击最大。因此,揭示植物对这些压力源的反应的分子性质对于气候智能玉米的发展至关重要。这份手稿的主要目的是研究玉米植物如何应对这些胁迫,无论是单独还是组合。此外,该论文深入研究了利用玉米野生近缘种作为宝贵遗传资源的潜力,并利用基于AI的技术来提高玉米的抗逆性。还强调了多组学方法,特别是基因组学和转录组学在剖析胁迫耐受性的遗传基础中的作用。提出了前进的道路,即利用跨学科最先进的前瞻性大数据通过组学技术获得的大量信息,网络农业系统,和基于人工智能的方法来协调气候适应型玉米基因型的发展。
    Climate change, particularly drought and heat stress, may slash agricultural productivity by 25.7% by 2080, with maize being the hardest hit. Therefore, unraveling the molecular nature of plant responses to these stressors is vital for the development of climate-smart maize. This manuscript\'s primary objective was to examine how maize plants respond to these stresses, both individually and in combination. Additionally, the paper delved into harnessing the potential of maize wild relatives as a valuable genetic resource and leveraging AI-based technologies to boost maize resilience. The role of multiomics approaches particularly genomics and transcriptomics in dissecting the genetic basis of stress tolerance was also highlighted. The way forward was proposed to utilize a bunch of information obtained through omics technologies by an interdisciplinary state-of-the-art forward-looking big-data, cyberagriculture system, and AI-based approach to orchestrate the development of climate resilient maize genotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Prime编辑是一种通用的基于CRISPR/Cas的精确基因组编辑技术,用于作物育种。最近使用来自三种不同来源的进化和工程化逆转录酶(RT)变体产生了四种新类型的名为PE6a-d的主编辑(PE)。在这项研究中,我们在转基因水稻(Oryzasativa)植物中测试了四种PE6变体和另外两种具有双RT模块的PE6构建体的编辑效率。PE6c,具有来自酵母Tf1逆转录转座子的进化和工程改造的RT变体,产生了最高的主编辑效率。与PEmax相比,PE6c编辑效率的平均倍数变化超过3.5,来自15个基因的18个农学上重要的靶位点。我们还证明了使用两个RT模块来提高原始编辑效率的可行性。我们的结果表明,PE6c或其衍生物将是单子叶植物初等编辑的绝佳选择。此外,我们的发现为基于主要编辑的具有增强的农艺重要性状的水稻品种育种奠定了基础。
    Prime editing is a versatile CRISPR/Cas-based precise genome-editing technique for crop breeding. Four new types of prime editors (PEs) named PE6a-d were recently generated using evolved and engineered reverse transcriptase (RT) variants from three different sources. In this study, we tested the editing efficiencies of four PE6 variants and two additional PE6 constructs with double-RT modules in transgenic rice (Oryza sativa) plants. PE6c, with an evolved and engineered RT variant from the yeast Tf1 retrotransposon, yielded the highest prime-editing efficiency. The average fold change in the editing efficiency of PE6c compared with PEmax exceeded 3.5 across 18 agronomically important target sites from 15 genes. We also demonstrated the feasibility of using two RT modules to improve prime-editing efficiency. Our results suggest that PE6c or its derivatives would be an excellent choice for prime editing in monocot plants. In addition, our findings have laid a foundation for prime-editing-based breeding of rice varieties with enhanced agronomically important traits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cas12a(Cpf1),2类V型CRISPR/Cas核酸酶,具有基因组编辑的几个独特属性,可能为Cas9提供有价值的替代方案。然而,由于温度敏感性而导致的低编辑效率和Cas12a核酸酶的裂解活性不足是其广泛应用的主要障碍。在这份报告中,我们生成了两个变体,ttAsCas12Ultra和ttLbCas12aUltra拥有三个(E174R,M537R,和F870L)或两个(D156R和E795L)突变,分别,通过组合来自温度耐受变体ttAsCas12a(E174R)和ttLbCas12a(D156R)的突变,以及来自高活性变体AsCas12aUltra(M537R和F870L)和LbCas12aUltra(E795L)的那些。我们比较了五种所得Cas12a变体的编辑效率(LbCas12a,ttLbCas12a,ttLbCas12aUltra,AsCas12aUltra,和ttAsCas12Ultra)在拟南芥(拟南芥)中四个基因的六个靶位点。变种ttLbCas12aUltra,有D156R和E795L突变,在拟南芥中测试的所有变体中表现出最高的编辑效率,并且可用于在22°C下生长的拟南芥植物中在单个世代中产生纯合或双等位基因突变体。此外,ttLbCas12aUltra的优化,通过改变核定位信号序列和密码子使用,进一步大大提高了编辑效率。总的来说,我们的结果表明,ttLbCas12aUltra是一个有价值的替代Cas9编辑基因或启动子在拟南芥。
    在线版本包含补充材料,可在10.1007/s42994-024-00144-w获得。
    Cas12a (Cpf1), a Class 2 Type V CRISPR/Cas nuclease, has several unique attributes for genome editing and may provide a valuable alternative to Cas9. However, a low editing efficiency due to temperature sensitivity and insufficient cleavage activity of the Cas12a nuclease are major obstacles to its broad application. In this report, we generated two variants, ttAsCas12 Ultra and ttLbCas12a Ultra harboring three (E174R, M537R, and F870L) or two (D156R and E795L) mutations, respectively, by combining the mutations from the temperature-tolerant variants ttAsCas12a (E174R) and ttLbCas12a (D156R), and those from the highly active variants AsCas12a Ultra (M537R and F870L) and LbCas12a Ultra (E795L). We compared editing efficiencies of the five resulting Cas12a variants (LbCas12a, ttLbCas12a, ttLbCas12a Ultra, AsCas12a Ultra, and ttAsCas12 Ultra) at six target sites of four genes in Arabidopsis (Arabidopsis thaliana). The variant ttLbCas12a Ultra, harboring the D156R and E795L mutations, exhibited the highest editing efficiency of all variants tested in Arabidopsis and can be used to generate homozygous or biallelic mutants in a single generation in Arabidopsis plants grown at 22 °C. In addition, optimization of ttLbCas12a Ultra, by varying nuclear localization signal sequences and codon usage, further greatly improved editing efficiency. Collectively, our results indicate that ttLbCas12a Ultra is a valuable alternative to Cas9 for editing genes or promoters in Arabidopsis.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00144-w.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对体外培养和再生的依赖性限制了对优质小麦(TriticumaestivumL.)品种使用基因组编辑的能力。我们最近开发了一种用于小麦基因编辑的植物粒子轰击(iPB)技术,该技术利用茎尖分生组织(SAMs)作为靶组织。由于该方法不需要体外培养,因此,它可以用于顽固的品种。在这一章中,我们详细描述了iPB方法中使用的步骤。有了这个协议,从轰击的SAM生长的T0植物的3%至5%通常携带突变等位基因,并且大约1%至2%的T0植物在下一代中继承突变等位基因。
    Dependency on in vitro culture and regeneration limits the ability to use genome editing on elite wheat (Triticum aestivum L.) varieties. We recently developed an in planta particle bombardment (iPB) technique for gene editing in wheat that utilizes shoot apical meristems (SAMs) as a target tissue. Since the method does not require in vitro culture, it can therefore be used on recalcitrant varieties. In this chapter, we describe in detail the steps used in the iPB method. With this protocol, 3% to 5% of T0 plants grown from bombarded SAMs typically carry mutant alleles and approximately 1% to 2% of the T0 plants inherit mutant alleles in the next generation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    敲除突变体提供了有关农艺性状相关基因的功能的明确信息,包括种子休眠。然而,使用常规技术在多倍体植物如六倍体小麦中产生敲除突变体需要很多年。使用序列特异性核酸酶进行基因组编辑是同时在小麦的所有靶向同源物中获得敲除突变的有前途的方法。这里,我们描述了通过基因组编辑在小麦中产生三隐性突变体的方法。该方案涵盖了gRNA和农杆菌介导的转化的评估,以获得编辑的小麦幼苗。
    Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号