Genome editing

基因组编辑
  • 文章类型: Journal Article
    对人类疾病进行建模是生物医学研究的重要组成部分。分子遗传学领域的最新进展使得获得用于研究各种疾病的转基因动物成为可能。由于遗传修饰,不仅可以在实验动物中模仿单基因疾病,而且可以模仿染色体和多因素疾病。甚至人类传染病也可以在转基因动物中进行研究。疾病的动物模型能够追踪其发病机制,更重要的是,测试新疗法。在本文的第一部分,我们回顾了最常见的DNA修饰技术,并根据手头的任务提供了具体技术选择的关键思路。在第二部分,我们专注于转基因小鼠在研究人类疾病中的应用。
    Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    辣椒霉菌基因座O(CaMLO2)基因对于植物对白粉病等真菌病原体的防御反应至关重要,对温室辣椒作物的重大威胁。基因组编辑的最新进展,特别是使用成簇的规则间隔短回文重复序列(CRISPR)/Cas9,为修饰抗病基因和改善作物特性提供了前所未有的机会.然而,CRISPR技术在辣椒品种中的应用受到限制,再生过程仍然具有挑战性。本研究通过研究在六个商业辣椒品种中使用经过验证的CaMLO2遗传剪刀系统的可行性来解决这些限制。我们评估了先前报道的高效Cas9/CaMLO2单向导RNA(sgRNA)1-核糖核蛋白(RNP)和低效率Cas9/CaMLO2sgRNA2-RNP系统的基因编辑效率,方法是从甜椒“Dempsey”和辣椒“CM334”扩展到六个商业辣椒品种。在六个品种中,CaMLO2sgRNA1的编辑效率为6.3%至17.7%,而CaMLO2sgRNA2没有显示编辑效率,突出sgRNA1的优越功效。这些发现表明,无论其品种基因型如何,利用经过验证的Cas9/CaMLO2sgRNA1-RNP系统在不同辣椒品种的CaMLO2基因座上实现有效的基因编辑的潜力。这项研究为开发具有CaMLO2介导的增强抗病性的改良辣椒品种提供了有效的基因组编辑工具。
    The Capsicum annuum Mildew Locus O (CaMLO2) gene is vital for plant defense responses against fungal pathogens like powdery mildew, a significant threat to greenhouse pepper crops. Recent advancements in genome editing, particularly using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, have unlocked unprecedented opportunities for modifying disease-resistant genes and improving crop characteristics. However, the application of CRISPR technology in pepper cultivars has been limited, and the regeneration process remains challenging. This study addresses these limitations by investigating the feasibility of using the validated CaMLO2 genetic scissors system in six commercial hot pepper cultivars. We assessed the gene-editing efficiency of the previously reported high-efficiency Cas9/CaMLO2single-guide RNA (sgRNA)1-ribonucleoprotein (RNP) and the low-efficiency Cas9/CaMLO2sgRNA2-RNP systems by extending their application from the bell pepper \'Dempsey\' and the hot pepper \'CM334\' to six commercial hot pepper cultivars. Across the six cultivars, CaMLO2sgRNA1 demonstrated an editing efficiency ranging from 6.3 to 17.7%, whereas CaMLO2sgRNA2 exhibited no editing efficiency, highlighting the superior efficacy of sgRNA1. These findings indicate the potential of utilizing the verified Cas9/CaMLO2sgRNA1-RNP system to achieve efficient gene editing at the CaMLO2 locus in different Capsicum annuum cultivars regardless of their cultivar genotypes. This study provides an efficacious genome-editing tool for developing improved pepper cultivars with CaMLO2-mediated enhanced disease resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们描述了合成酵母染色体XI(synXI)的构建,并揭示了非编码DNA元件重新设计的效果。在将基于CRISPR的方法用于发现错误的过程之前,从合成的DNA片段组装了660kb的合成酵母基因组计划(Sc2.0)染色体。重新设计,和染色体修复,包括精确压实200kb的重复序列。修复的缺陷与着丝粒功能差和线粒体健康有关,并且与非编码区的修饰有关。作为Sc2.0设计的一部分,在大多数基因之间插入用于Cre介导的重组的loxPsym序列。使用来自XI染色体的GAP1基因座,我们表明,这些位点可以促进诱导染色体外环状DNA(eccDNA)的形成,允许直接研究这些重要分子的影响和传播。synXI的构建和表征有助于我们对非编码DNA元件的理解,为eccDNA研究提供了一个有用的工具,并将为未来的合成基因组设计提供信息。
    We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物大脑皮层经历严格调控的发育过程。详细的原位可视化,这些动态过程的成像,和体内功能基因研究大大增强了我们对大脑发育和相关疾病的理解。这篇综述介绍了体内电穿孔的基本技术和最新进展,以研究脑疾病的分子机制。子宫内电穿孔(IUE)被广泛用于可视化和修改这些过程,包括病理突变体在人类疾病中的强制表达;因此,该方法可用于建立动物疾病模型。先进技术的出现,比如基因组编辑,包括从头敲除,敲入,表观遗传编辑,和时空基因调控,进一步扩大了我们的调查工具清单。这些工具包括用于精确控制外源基因的时间和拷贝数的iON表达开关和用于研究基因的时间效应的TEMPO。我们还介绍了iGONAD方法,通过输卵管核酸递送方法改进的基因组编辑,作为一种新的基因组编辑技术,加速了大脑发育的探索。这些先进的体内电穿孔方法有望为与人脑疾病相关的病理状况提供有价值的见解。
    The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为基因组编辑技术,成簇的规则间隔短回文重复序列(CRISPR)的发展和出现为基因工程创造了许多机会。以有效和成本有效的方式添加或去除DNA的序列特异性能力彻底改变了生命科学和医疗保健领域的现代研究。CRISPR在临床研究中广泛用作基因组工程工具,用于详细观察基因表达和代谢途径调控。即使在转基因研究和个性化基因操作研究的情况下,基于CRISPR的技术被广泛使用。为了理解甚至纠正癌症的潜在遗传问题,可以使用基于CRISPR的技术。世界各地正在进行各种工作,这些工作试图靶向不同的基因,以发现治疗癌症的新颖有效的方法。在这次审查中,我们就CRISPR基因编辑技术在癌症治疗中的应用进行了简要的综述,建模和治疗技术。
    The development and emergence of clustered regularly interspaced short palindromic repeats (CRISPR) as a genome-editing technology have created a plethora of opportunities in genetic engineering. The ability of sequence-specific addition or removal of DNA in an efficient and cost-effective manner has revolutionized modern research in the field of life science and healthcare. CRISPR is widely used as a genome engineering tool in clinical studies for observing gene expression and metabolic pathway regulations in detail. Even in the case of transgenic research and personalized gene manipulation studies, CRISPR-based technology is used extensively. To understand and even to correct the underlying genetic problem is of cancer, CRISPR-based technology can be used. Various kinds of work is going on throughout the world which are attempting to target different genes in order to discover novel and effective methodologies for the treatment of cancer. In this review, we provide a brief overview on the application of CRISPR gene editing technology in cancer treatment focusing on the key aspects of cancer screening, modelling and therapy techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在南非人最近进行的关于可遗传人类基因组编辑(HHGE)的公众参与研究中,与会者批准将HHGE用于严重的健康状况-将其视为带来有价值的社会产品的一种手段-并建议政府应积极投入资源,以确保每个人都有平等机会获得用于这些目的的技术。这种立场被认为后代对这些社会商品有权利的观点所鼓舞,这一权利证明了HHGE在目前可用。这种说法在Ubuntu伦理(源自南非)中可以在伦理上是合理的,因为它(a)强调社区的利益,和(b)支持一种超越当代人并包括过去和后代的形而上学的社区概念。在此基础上,可以代表潜在人员提出令人信服的主张,以支持平等获得HHGE。
    In a recent public engagement study on heritable human genome editing (HHGE) conducted among South Africans, participants approved of using HHGE for serious health conditions-viewing it as a means of bringing about valuable social goods-and proposed that the government should actively invest resources to ensure everyone has equal access to the technology for these purposes. This position was animated by the view that future generations have a claim to these social goods, and this entitlement justified making HHGE available in the present. This claim can be ethically justified in the Ubuntu ethic (deriving from South Africa) as it (a) emphasizes the interests of the community, and (b) espouses a metaphysical conception of the community that transcends the present generation and includes past and future generations. On this basis, a compelling claim can be made on behalf of prospective persons in favor of equal access to HHGE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于神经回路的复杂性和大量专门细胞类型,在分子水平上研究中枢神经系统(CNS)疾病具有挑战性。此外,基因组关联研究揭示了精神分裂症和其他遗传决定的精神障碍的复杂遗传结构。研究这种复杂的遗传结构以破译CNS病理的分子基础需要使用高通量模型,例如细胞及其衍生物。基于CRISPR(成簇的定期间隔短回文重复)/Cas系统的高通量遗传技术来操纵多个基因组靶标的时机即将到来。CRISPR/Cas系统提供了所需的复杂性,多功能性,和灵活性,以创造新的遗传工具能够改变DNA序列和影响其功能在更高水平的遗传信息流。CRISPR/Cas工具可以发现和研究神经元细胞的基因型和表型之间的复杂关系。这篇综述的目的是讨论基于CRISPR的创新方法,用于使用细胞模型研究CNS病理的分子机制。
    The study of diseases of the central nervous system (CNS) at the molecular level is challenging because of the complexity of neural circuits and the huge number of specialized cell types. Moreover, genomic association studies have revealed the complex genetic architecture of schizophrenia and other genetically determined mental disorders. Investigating such complex genetic architecture to decipher the molecular basis of CNS pathologies requires the use of high-throughput models such as cells and their derivatives. The time is coming for high-throughput genetic technologies based on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas systems to manipulate multiple genomic targets. CRISPR/Cas systems provide the desired complexity, versatility, and flexibility to create novel genetic tools capable of both altering the DNA sequence and affecting its function at higher levels of genetic information flow. CRISPR/Cas tools make it possible to find and investigate the intricate relationship between the genotype and phenotype of neuronal cells. The purpose of this review is to discuss innovative CRISPR-based approaches for studying the molecular mechanisms of CNS pathologies using cellular models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    除了基因工程小鼠,很少有可靠的平台可用于造血干细胞(HSC)静止的研究。在这里,我们提出了一个平台,通过将维持静止的培养条件与针对HSC优化的CRISPR-Cas9基因组编辑系统相结合来分析HSC细胞周期静止。我们证明HSC的预培养通过促进核糖核蛋白复合物的核转运来提高编辑效率。对于后期编辑文化,基于非同源末端连接编辑并在低细胞因子下培养的小鼠和人HSC,低氧,和高白蛋白条件比在增殖条件下培养的更好地保留了它们的表型和静止性。使用这种方法,即使在通过同源定向修复进行编辑后,HSC也会恢复静止。我们的结果表明,基因编辑的HSC的低细胞因子培养条件是研究离体HSC静止的有用方法。
    Other than genetically engineered mice, few reliable platforms are available for the study of hematopoietic stem cell (HSC) quiescence. Here we present a platform to analyze HSC cell cycle quiescence by combining culture conditions that maintain quiescence with a CRISPR-Cas9 genome editing system optimized for HSCs. We demonstrate that preculture of HSCs enhances editing efficiency by facilitating nuclear transport of ribonucleoprotein complexes. For post-editing culture, mouse and human HSCs edited based on non-homologous end joining and cultured under low-cytokine, low-oxygen, and high-albumin conditions retain their phenotypes and quiescence better than those cultured under the proliferative conditions. Using this approach, HSCs regain quiescence even after editing by homology-directed repair. Our results show that low-cytokine culture conditions for gene-edited HSCs are a useful approach for investigating HSC quiescence ex vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    Schizophrenia is a severe mental illness, in the etiology and pathogenesis of which hereditary factors make a significant contribution. Studies of the genetic causes of schizophrenia are conducted using a variety of models. This brief review introduces the reader to cellular and supracellular models that, because of their simplicity, low cost, and low labor intensity, help to effectively investigate the complex molecular mechanisms associated with schizophrenia. The potential of cellular and supracellular models is greatly enhanced by the use of the CRISPR/Cas9 genome editing technology. Genetically modified models make it possible to achieve a previously inaccessible depth and detail of understanding of the role of genetic factors in the onset and development of schizophrenia. The information obtained can be used in the design of new drugs for personalized treatment of schizophrenia patients.
    Шизофрения — это тяжелое психическое заболевание, в этиологию и патогенез которого значительный вклад вносят наследственные факторы. Исследования генетических причин шизофрении ведутся с использованием разнообразных моделей. Краткий обзор знакомит читателя с клеточными и надклеточными моделями, которые благодаря своей простоте, низкой стоимости и трудоемкости помогают эффективно исследовать сложные молекулярные механизмы, ассоциированные с шизофренией. Возможности этих моделей значительно расширяются с использованием технологии редактирования генома системой CRISPR/Cas9. Генетически модифицированные модели позволяют достичь ранее недоступной глубины и детальности понимания роли генетических факторов в возникновении и развитии шизофрении. Полученная информация может быть использована при разработке новых лекарственных препаратов для персонализированного лечения больных шизофренией.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的10年里,基因治疗领域的纳米粒子取得了显著进展;然而,低递送效率和其他原因阻碍了纳米载体的临床转化。因此,需要总结该领域的热点和趋势,以促进进一步的研究发展。在这项研究中,从2011年到2021年,CiteSpace分析了1,221条关于纳米颗粒靶向递送系统的WebofScience索引手稿的完整记录和引用参考文献,VOSviewer,和MapEquation。在这些软件中,关键词共现网络,冲积图,共同引文网络,并进行了结构变异分析,以强调科学界对核酸靶向递送的纳米医学的关注。关键词如转染效率,肿瘤细胞,膜抗原,和siRNA递送在来自VOSviewer的密度图中突出显示。此外,构建了冲积层流程图来检测概念的变化.在共同引文网络中,簇1(外泌体)和簇17(基因组编辑)是新的研究领域,并且在结构变异分析中揭示了修饰纳米粒子的努力。适体和SELEX(通过指数富集的配体的系统进化)代表了靶向递送中的有用系统。这些结果表明纳米载体的转染效率需要持续改进。随着几种核酸药物的批准,纳米颗粒载体的新内容是引入基因编辑技术,特别是CRISPR/Cas9(成簇规则间隔的短回文重复/CRISPR相关蛋白9)。此外,外泌体具有作为靶向纳米颗粒的巨大潜力。通过绘制纳米医学在核酸靶向递送中的知识领域,本研究分析了该领域近10年的知识结构,强调对纳米粒子的经典修改,并为对该领域感兴趣的研究人员和决策者估计未来的趋势。
    Nanoparticles for the gene therapy field have seen remarkable progress over the last 10 years; however, low delivery efficiency and other reasons impede the clinical translation of nanocarriers. Therefore, a summary of hotspots and trends in this field is needed to promote further research development. In this research, from 2011 to 2021, 1,221 full records and cited references of Web of Science-indexed manuscripts regarding nanoparticle-targeted delivery systems have been analyzed by CiteSpace, VOSviewer, and MapEquation. In these software, keywords co-occurrence networks, alluvial diagram, co-citation networks, and structural variation analysis were carried out to emphasize the scientific community\'s focus on nanomedicine of targeted delivering of nucleic acids. Keywords such as transfection efficiency, tumor cell, membrane antigen, and siRNA delivery were highlighted in the density map from VOSviewer. In addition, an alluvial flow diagram was constructed to detect changes in concepts. In the co-citation network, cluster 1 (exosomes) and cluster 17 (genome editing) were new research fields, and the efforts in modifying nanoparticles were revealed in the structural variation analysis. Aptamer and SELEX (systematic evolution of ligands by exponential enrichment) represented a helpful system in targeted delivery. These results indicated that the transfection efficiency of nanocarriers required continuous improvements. With the approval of several nucleic acid drugs, a new content of nanoparticle carriers is to introduce gene-editing technology, especially CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9). In addition, exosomes have great potential as targeted nanoparticles. By mapping the knowledge domains of nanomedicine in targeted delivering of nucleic acids, this study analyzed the intellectual structure of this domain in the recent 10 years, highlighting classical modifications on nanoparticles and estimating future trends for researchers and decision-makers interested in this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号