Genome editing

基因组编辑
  • 文章类型: Journal Article
    快速增长的CRISPR工具箱和方法的应用具有巨大的潜力来改变生物医学研究。这里,我们提供了最新的CRISPR工具箱的快照,然后批判性地讨论与基于CRISPR的核基因组编辑相关的承诺和障碍,表观基因组编辑,和线粒体编辑。体内实现表观基因组编辑的技术挑战和关键解决方案,在vivo基础编辑和prime编辑,复杂组织和动物的线粒体编辑,和CRISPR相关的转座酶和整合酶在非常大的DNA有效载荷的靶向基因组整合进行了讨论。最后,我们讨论了CRISPR/Cas9临床试验的最新情况,并提供了基于CRISPR的基因治疗的观点。除了技术上的缺陷,人们广泛强调了CRISPR在人类治疗和研究中的应用的伦理和社会考虑。
    The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水产养殖是全球增长最快的食品生产部门,因为它已成为全球粮食供应的重要组成部分。就产量而言,中国拥有世界上最大的水产养殖业。然而,鱼类养殖的可持续发展受到几个问题的阻碍,包括种质退化和疾病爆发。基因组育种的实践,严重依赖于基因组信息和基因型表型关系,具有提高水产养殖生产效率的巨大潜力。2014年中国舌根基因组测序和注释的完成标志着中国鱼类基因组学时代的开始。从那以后,国内研究人员在功能基因组研究方面取得了巨大进展。迄今为止,对我国60多种鱼类的基因组进行了组装和注释。基于这些参考基因组,进化,比较,和功能基因组研究彻底改变了我们对鱼类广泛的生物和经济重要特征的理解,包括成长和发展,性别决定,抗病性,变态,和色素沉着。此外,基因组工具和育种技术,如SNP阵列,基因组选择,和基因组编辑通过将功能性基因组信息整合到育种活动中,大大加速了遗传改良。这篇综述旨在总结目前的现状,预付款,以及基因组资源的观点,重要性状的基因组研究,和中国鱼类基因组育种技术。该评论将为水产养殖研究人员提供,鱼饲养员,和农民提供有关鱼类基因组研究和育种技术的最新信息。该结论将有助于促进生产性状的遗传改良,从而支持鱼类养殖业的可持续发展。
    Aquaculture represents the fastest-growing global food production sector, as it has become an essential component of the global food supply. China has the world\'s largest aquaculture industry in terms of production volume. However, the sustainable development of fish culture is hindered by several concerns, including germplasm degradation and disease outbreaks. The practice of genomic breeding, which relies heavily on genome information and genotypephenotype relationships, has significant potential for increasing the efficiency of aquaculture production. In 2014, the completion of the genome sequencing and annotation of the Chinese tongue sole signified the beginning of the fish genomics era in China. Since then, domestic researchers have made dramatic progress in functional genomic studies. To date, the genomes of more than 60 species of fish in China have been assembled and annotated. Based on these reference genomes, evolutionary, comparative, and functional genomic studies have revolutionized our understanding of a wide range of biologically and economically important traits of fishes, including growth and development, sex determination, disease resistance, metamorphosis, and pigmentation. Furthermore, genomic tools and breeding techniques such as SNP arrays, genomic selection, and genome editing have greatly accelerated genetic improvement through the incorporation of functional genomic information into breeding activities. This review aims to summarize the current status, advances, and perspectives of the genome resources, genomic study of important traits, and genomic breeding techniques of fish in China. The review will provide aquaculture researchers, fish breeders, and farmers with updated information concerning fish genomic research and breeding technology. The summary will help to promote the genetic improvement of production traits and thus will support the sustainable development of fish aquaculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    畜牧业生产对温室气体(GHG)排放特别是甲烷(CH4)排放有显著贡献,从而影响气候变化。为了进一步解决这个问题,至关重要的是建立战略,同时提高反刍动物的生产力,同时减少温室气体排放,特别是来自牛,绵羊,还有山羊.最近的进展揭示了通过遗传选择来调节瘤胃微生物生态系统以减少甲烷(CH4)产生的潜力。通过微生物基因组编辑,包括CRISPR/Cas9,TALEN(转录激活因子样效应核酸酶),ZFN(锌指核酸酶),RNA干扰(RNAi),Pime编辑,碱基编辑和双链无断裂(无DSB)。这些技术可以实现精确的遗传修饰,提供机会来增强减少环境影响和优化代谢途径的性状。此外,各种与营养相关的措施在不同程度上减少甲烷排放方面显示出希望。这篇综述旨在通过利用CRISPR/Cas9技术来设计瘤胃内的微生物聚生体,提出减少反刍动物甲烷排放的面向未来的观点。最终目标是开发可持续的畜牧业生产方法,有效减少甲烷排放,同时保持动物健康和生产力。
    Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碱基编辑代表了一种尖端的基因组编辑技术,该技术利用CRISPR系统将碱基脱氨酶高精度地引导到特定的基因组位点,促进单个核苷酸的靶向改变。与传统的基因编辑方法不同,碱基编辑不需要DNA双链断裂或供体模板。它的功能独立于细胞DNA修复机制,在效率和准确性方面提供了显著的优势。在这次审查中,我们总结了各种DNA碱基编辑器的核心设计原则,他们独特的编辑特征,和策略来完善它们的功效。我们还总结了它们在作物遗传改良中的应用,并探讨了它们对森林基因工程的潜在贡献。
    Base editing represents a cutting-edge genome editing technique that utilizes the CRISPR system to guide base deaminases with high precision to specific genomic sites, facilitating the targeted alteration of individual nucleotides. Unlike traditional gene editing approaches, base editing does not require DNA double-strand breaks or donor templates. It functions independently of the cellular DNA repair machinery, offering significant advantages in terms of both efficiency and accuracy. In this review, we summarize the core design principles of various DNA base editors, their distinctive editing characteristics, and tactics to refine their efficacy. We also summarize their applications in crop genetic improvement and explore their potential contributions to forest genetic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    更大的蜡蛾,雪莲(鳞翅目,Pyralidae),是一种主要的蜜蜂害虫,对蜂箱造成相当大的伤害,造成经济损失。它也是一种有价值的资源昆虫和模式生物。成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)系统在改善鳞翅目经济昆虫育种和发展高效的农业害虫管理系统中起着至关重要的作用。然而,CRISPR/Cas9协议尚未开发用于G.mellonella。这里,使用CRISPR/Cas9基因组编辑系统建立了Gmebony敲除(KO)菌株。我们在G4代获得了GmebonyKO菌株,花了大约10个月。与野生型相比,头,notum,KO品系中1-4龄幼虫的末端腹面由黄色变为棕色,KO菌株的这些区域逐渐从5龄幼虫转变为黑色,KO品系中成年蛾的体色变为黑色。早期幼虫和随后的幼虫龄的发育期延长。GmebonyKO菌株的胚胎孵化率明显下降。GmebonyKO菌株的p体重不受影响。CRISPR/Cas9方法的可行性通过Gmebony的单靶标编辑得到验证。我们的发现提供了第一个证据,表明乌木基因可以作为G的遗传修饰的色素沉着参考基因。同时,它可用于开发基因组编辑控制策略和用于G.mellonella的基因功能分析。
    The greater wax moth, Galleria mellonella (Lepidoptera, Pyralidae), is a major bee pest that inflicts considerable harm on beehives, leading to economic losses. It also serves as a valuable resource insect and a model organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system plays a crucial role in improving economic insect breeding and developing efficient agricultural pest management systems in Lepidoptera. However, the CRISPR/Cas9 protocols have not been developed for G. mellonella. Here, the Gmebony knockout (KO) strain was established using the CRISPR/Cas9 genome editing system. We obtained Gmebony KO strain in the G4 generation, which took approximately 10 months. When compared with wild-type, the head, notum, and the terminal abdominal surface of 1st to 4th instar larvae in the KO strain changed from yellow to brown, and these regions of the KO strain gradually transformed into a black color from the 5th instar larvae, and the body color of the adult moth in the KO strain changed to black. The developmental period of the early larval and the following larval instars extended. The embryonic hatchability of the Gmebony KO strain was significantly decreased. The pupal body weight of the Gmebony KO strain was not affected. The feasibility of the CRISPR/Cas9 methodology was validated by single-target editing of Gmebony. Our findings provide the first evidence that the ebony gene can serve as a pigmentation reference gene for genetic modifications of G. mellonella. Meanwhile, it can be utilized in the development of genome editing control strategies and for gene function analyses in G. mellonella.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质疗法在治疗多种疾病中起着至关重要的作用,从感染到遗传性疾病。然而,它们输送到肝脏以外的目标组织,比如肺,仍然是一个巨大的挑战。这里,我们报告了一种普遍适用的策略,通过对肺特异性超分子纳米颗粒(LSNPs)进行工程化,用于肺靶向蛋白递送.这些纳米颗粒是通过金属有机多面体(MOP)的分层自组装设计的,具有定制的表面化学,使蛋白质封装和特异性肺亲和力静脉给药后。我们设计的LSNPs不仅解决了细胞膜不通透性的蛋白质和非特异性组织分布的蛋白质传递的障碍,而且在提供各种蛋白质方面也表现出非凡的多功能性,包括对抗炎和基于CRISPR的肺部基因组编辑至关重要的那些,跨越多种动物物种,包括老鼠,兔子,还有狗.值得注意的是,使用LSNPs递送抗菌蛋白可有效缓解急性细菌性肺炎,证明了巨大的治疗潜力。我们的策略不仅克服了组织特异性蛋白质递送的障碍,而且为遗传性疾病的靶向治疗和对抗抗生素耐药性铺平了道路。提供精确的蛋白质治疗的通用解决方案。
    Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非洲猪瘟病毒(ASFV)的出现和传播对全球猪养殖业构成了重大威胁,呼吁采用有利于病毒遏制和控制的创新方法。最近的一项研究(Z.郑,L.Xu,H.窦,Y.Zhou,X.,etal.,MicrobiolSpectr12:e02164-23,2024,https://doi.org/10.1128/spectrum.02164-23)建立了靶向ASFV基因组的多重CRISPR-Cas系统,并在体外和体内测试了随后的抗病毒活性。该系统的应用表明病毒在体外复制显著减少,而表达该系统的种系编辑的猪表现出正常生长,并具有连续的指导RNA表达。尽管与非工程猪相比,ASFV攻击没有观察到生存优势,这标志着首次尝试进行种系编辑以追求ASFV抗性,并为未来利用CRISPR-Cas技术的抗病动物育种方法铺平了道路.
    The emergence and spread of the African swine fever virus (ASFV) posed a significant threat to the global swine breeding industry, calling for innovative approaches benefiting viral containment and control. A recent study (Z. Zheng, L. Xu, H. Dou, Y. Zhou, X., et al., Microbiol Spectr 12: e02164-23, 2024, https://doi.org/10.1128/spectrum.02164-23) established a multiplexed CRISPR-Cas system targeting the genome of ASFV and tested the consequent antiviral activity both in vitro and in vivo. Application of this system showed a significant reduction of viral replication in vitro, while the germline-edited pigs expressing this system exhibited normal growth with continuous guide RNA expression. Although no survival advantage was observed upon ASFV challenge compared with nonengineered pigs, this marks the first attempt of germline editing to pursue ASFV resistance and paves the way for future disease-resistant animal breeding approaches utilizing CRISPR-Cas technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    IscB蛋白,作为Cas9核酸内切酶的祖先,由于它们的小尺寸和多样化基因组编辑的潜力,因此拥有巨大的希望。然而,它们在哺乳动物细胞中的活性不能令人满意。通过在IscB中引入三个剩余取代,我们观察到活性平均增加7.5倍.通过融合序列非特异性DNA结合蛋白结构域,eIscB-D变体实现了更高的编辑效率,最高为91.3%。此外,产生了工程化的ωRNA,长度减少了20%,效率略有提高。与原始IscB相比,工程化的eIscB-D/eωRNA系统的活性平均增加20.2倍。此外,我们成功地采用eIscB-D进行高效的胞嘧啶和腺嘌呤碱基编辑。值得注意的是,eIscB-D在小鼠细胞系和胚胎中具有很高的活性,能够通过mRNA/ωRNA注射有效生成疾病模型。我们的研究表明,这些微型基因组编辑工具在各种应用中具有巨大的潜力。
    The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    成簇的规则间隔短回文重复序列(CRISPR)及其相关蛋白(Cas)系统是一种由RNA内切核酸酶指导的基因编辑技术。CRISPR-Cas12a(也称为CRISPR-Cpf1)系统由于其准确性和高效率而被广泛用于基因组编辑研究。在本文中,我们主要关注CRISPR-Cpf1技术在疾病模型构建和基因治疗中的应用。首先,介绍了CRISPR-Cas系统的结构和作用机理。其次,比较了CRISPR-Cpf1和CRISPR-Cas9技术的异同。第三,主要集中在CRISPR-Cpf1系统在细胞和动物基因组编辑中的应用。最后,分析了CRISPR-Cpf1技术面临的挑战和相应的策略。尽管CRISPR-Cpf1技术具有一定的脱靶效应,它可以有效准确地编辑细胞和动物基因组,在临床前研究中具有显著优势。
    The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非致病性分枝杆菌,包括新耳分枝杆菌,由于其天然的类固醇代谢途径,可以直接利用植物甾醇进行大规模工业化生产类固醇药物中间体。新牛分枝杆菌的靶向基因修饰有利于筛选高附加值产品的高产工程菌,如妊娠-20-羧酸(PDC),这是合成一些皮质类固醇的重要前体。基于异源II型CRISPR/sth1Cas9系统,开发了一种简单的策略来遗传工程师M.neoaurum基因组。这里,从pMV261构建了一个可定制的质粒工具pMSC9,整合了sth1Cas9蛋白和相应的sgRNA支架。随后,pMSC9插入了对应于不同靶基因的间隔序列,生成编辑质粒,然后变成M.neoaurum.因此,通过CRISPR/sth1Cas9系统将目标基因引入DNA双林断裂(DSB),然后通过先天性非同源末端连接(NHEJ)机制进行修复。最后,编辑质粒通过无抗性培养从正确编辑的M.neoaurum突变体中治愈,将得到的缺失一个靶基因的突变体作为通过相同的过程可以缺失另一个靶基因的宿主。这项研究表明,CRISPR/sth1Cas9工具允许对新牛分枝杆菌菌株进行快速编辑。CRISPR/sth1Cas9系统的编辑模式表明,该工具是新牛分枝杆菌基因编辑工具箱的重要补充。
    Non-pathogenic mycobacteria, including Mycolicibacterium neoaurum, can directly utilize phytosterols for large-scale industrial production of steroid medicine intermediates due to their natural steroid metabolism pathway. The targeted genetic modification of M. neoaurum is conducive to the selection of high-yield engineering bacteria with high-value-added product, such as Pregnadien-20-carboxylic acid (PDC), which is an important precursor for synthesizing some corticosteroids. Based on heterologous type II CRISPR/sth1Cas9 system, a simple strategy was developed to genetic engineer M. neoaurum genome. Here, a customizable plasmid tool pMSC9 was constructed from pMV261 with integration of sth1Cas9 protein and corresponding sgRNA scaffold. Subsequently, the pMSC9 was inserted with spacer sequences corresponding to different targeted genes, generating editing plasmids, and then transformed into M. neoaurum. As a result, the targeted genes were introduced with DNA double stand breaks (DSBs) by CRISPR/sth1Cas9 system and then repaired by innate non-homologous end-joining (NHEJ) mechanism. Finally, editing plasmids were cured from correctly edited M. neoaurum mutants by means of no resistance cultivation, and the resulting mutant deleting the one target gene was used as the host to which another target gene could be deleted via the same process. This study demonstrated that the CRISPR/sth1Cas9 tool allowed M. neoaurum strains to be rapidly edited. And the editing mode of CRISPR/sth1Cas9 system indicated that this tool was an important supplement to the gene editing toolbox of M. neoaurum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号