Cell Fractionation

细胞分级分离
  • 文章类型: Journal Article
    构象疾病,比如阿尔茨海默氏症,帕金森病和亨廷顿病以及共济失调和额颞部疾病,是常见的神经系统疾病的一部分,其特征是显示异常构象的突变蛋白的聚集和逐渐积累。特别是,亨廷顿病(HD)是由突变引起的,突变导致亨廷顿蛋白(HTT)的聚谷氨酰胺(poly-Q)束异常扩张,导致在受影响患者的神经元中形成包涵体。此外,最近的实验证据通过揭示突变HTT通过细胞外囊泡(EV)在细胞之间转移的能力,挑战了疾病的传统观点,允许突变蛋白接种涉及突变型和野生型蛋白的寡聚体。仍然没有成功的治疗HD的策略。此外,目前对导致蛋白质寡聚化和聚集的生物过程的理解携带poly-Q束已经从对分离的poly-Q单体和寡聚物进行的研究中得出,其结构性质尚不清楚,往往不一致。在这里,我们描述了一种标准化的生化方法,通过等密度超速离心分析突变HTT的N端片段的寡聚化。我们方法的动态范围允许检测大型和异质HTT复合物。因此,在HD的背景下,它可以用于鉴定导致HTT聚集和朊病毒样扩散特性的新型分子决定簇。同样,它提供了一种工具来测试旨在抑制突变HTT聚集的新型小分子或生物活性化合物。
    Conformational diseases, such as Alzheimer\'s, Parkinson\'s and Huntington\'s diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington\'s disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein. There is still no successful strategy to treat HD. In addition, the current understanding of the biological processes leading to the oligomerization and aggregation of proteins bearing the poly-Q tract has been derived from studies conducted on isolated poly-Q monomers and oligomers, whose structural properties are still unclear and often inconsistent. Here we describe a standardised biochemical approach to analyse by isopycnic ultracentrifugation the oligomerization of the N-terminal fragment of mutant HTT. The dynamic range of our method allows one to detect large and heterogeneous HTT complexes. Hence, it could be harnessed for the identification of novel molecular determinants responsible for the aggregation and the prion-like spreading properties of HTT in the context of HD. Equally, it provides a tool to test novel small molecules or bioactive compounds designed to inhibit the aggregation of mutant HTT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    叶绿体分离方案已广泛用于各种植物物种,特别是具有易于操作的物理特征的模型生物。然而,多肉植物,如龙舌兰。,具有对干旱环境的适应性,如Crassulacean酸代谢(CAM)和较厚的角质层,受到的关注较少,导致潜在的知识差距。本章介绍了一个专门的方案,重点是从A.angustifolia中分离叶绿体,由于其在生产bacanora和mezcal饮料中的作用,对干旱条件具有适应性并具有生态和经济意义的物种。通过在体外和体外条件下成功分离出生长的沙棘植物叶绿体,该协议可以进行全面的未来分析,以阐明代谢过程并探索相关物种的潜在应用。因此,这项研究旨在弥合多肉植物叶绿体分离的知识差距,为该领域未来的调查提供新的见解。
    Chloroplast isolation protocols have been extensively developed for various species of plants, particularly model organisms with easily manipulable physical characteristics. However, succulent plants, such as Agave angustifolia Haw., which possess adaptations for arid environments like the Crassulacean acid metabolism (CAM) and a thicker cuticle, have received less attention, resulting in a potential knowledge gap. This chapter presents a specialized protocol focusing on isolating chloroplast from A. angustifolia, a species exhibiting adaptations to arid conditions and holding ecological and economic significance due to its role in producing bacanora and mezcal beverages. By successfully isolating chloroplast from A. angustifolia plant growth in ex vitro and in vitro conditions, this protocol enables comprehensive future analyses to elucidate metabolic processes and explore potential applications in related species. Consequently, this research aims to bridge this knowledge gap in chloroplast isolation for succulent plants, providing new insights for future investigations in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨骼肌是人体最大的组织之一。除了使自愿运动和维持身体的代谢稳态,骨骼肌也是许多病理状况的目标。线粒体占据肌肉肌纤维的10-15%体积,并调节许多细胞过程,这往往决定了细胞的命运。从骨骼肌中分离线粒体为各种多组学研究提供了机会,重点是生物医学研究领域的线粒体。在这里,我们描述了使用Nycodenz密度梯度超速离心从小鼠骨骼肌中有效分离高质量和纯度线粒体的方案。
    Skeletal muscle is one of the largest tissues in human body. Besides enabling voluntary movements and maintaining body\'s metabolic homeostasis, skeletal muscle is also a target of many pathological conditions. Mitochondria occupy 10-15% volume of a muscle myofiber and regulate many cellular processes, which often determine the fate of the cell. Isolation of mitochondria from skeletal muscle provides opportunities for various multi-omics studies with a focus on mitochondria in biomedical research field. Here we describe a protocol to efficiently isolate mitochondria with high quality and purity from skeletal muscle of mice using Nycodenz density gradient ultracentrifugation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生化分级分离是一种用于分离和分离不同细胞区室的技术,对于解剖细胞机制和分子途径至关重要。在这里,我们概述了分离超纯细胞核和细胞质的生化部分方法。该方案利用低渗裂解缓冲液悬浮细胞,再加上校准的离心策略,用于增强细胞质与核部分的分离。随后的纯化步骤确保分离的核级分的完整性。总的来说,这种方法有助于准确的蛋白质定位,对于功能研究至关重要,证明其在分离细胞区室中的功效。©2024作者WileyPeriodicalsLLC出版的当前协议。基本方案:生化分级支持方案1:使用Bradford测定的蛋白质定量支持方案2:SDS/PAGE和Western印迹。
    Biochemical fractionation is a technique used to isolate and separate distinct cellular compartments, critical for dissecting cellular mechanisms and molecular pathways. Herein we outline a biochemical fraction methodology for isolation of ultra-pure nuclei and cytoplasm. This protocol utilizes hypotonic lysis buffer to suspend cells, coupled with a calibrated centrifugation strategy, for enhanced separation of cytoplasm from the nuclear fraction. Subsequent purification steps ensure the integrity of the isolated nuclear fraction. Overall, this method facilitates accurate protein localization, essential for functional studies, demonstrating its efficacy in separating cellular compartments. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Biochemical fractionation Support Protocol 1: Protein quantification using Bradford assay Support Protocol 2: SDS/PAGE and Western blotting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分馏和表征目标样品是生物分子分析的基础。细胞外囊泡(EV),包含有关细胞出生地的信息,是生物学和医学的有希望的目标。然而,传统方法中对多步骤纯化的要求阻碍了对小样品的分析。这里,我们应用一个具有确定孔径的粘合剂的DNA折纸三脚架(例如,针对EV生物标志物的抗体),这让我们能够捕获目标分子。使用外泌体作为模型,我们表明,我们的三脚架纳米设备可以从广泛分布的粗EV混合物中捕获特定大小范围的EV与同源生物标志物.我们进一步证明,可以通过改变三脚架的孔径来控制捕获的电动汽车的尺寸。这种具有大小和生物标志物方法的同时选择应简化EV纯化过程并有助于从小样品中精确分析目标生物分子。
    Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多生物信息学工具可以高精度地预测膜蛋白在大肠杆菌外膜或内膜中的定位。然而,可能需要通过实验验证此类预测或测定膜蛋白的重组或突变变体的正确定位。在这里,我们描述了两种方法(优先去污剂溶解和蔗糖梯度分馏),允许分馏革兰氏阴性细菌膜并随后富集内或外膜蛋白。
    Numerous bioinformatics tools allow predicting the localization of membrane proteins in the outer or inner membrane of Escherichia coli with high precision. Nevertheless, it might be desirable to experimentally verify such predictions or to assay the correct localization of recombinant or mutated variants of membrane proteins. Here we describe two methods (preferential detergent solubilization and sucrose-gradient fractionation) that allow to fractionate Gram-negative bacterial membranes and subsequently to enrich inner or outer membrane proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物病毒的复制和移动依赖于宿主细胞因子。存在改变其定位和/或表达并且具有前病毒作用或抗病毒活性并且与病毒蛋白相互作用或靶向病毒蛋白的细胞蛋白。鉴定这些蛋白质及其在感染过程中的作用对于理解植物-病毒相互作用和设计作物的抗病毒抗性至关重要。重要的宿主蛋白已使用方法如标签依赖性免疫沉淀或需要克隆单个蛋白或整个病毒的酵母2杂交来鉴定。然而,宿主和病毒蛋白之间可能的相互作用数量是巨大的。因此,对于参与宿主-病毒相互作用的宿主蛋白的全蛋白质组鉴定,需要另一种方法.这里,我们将细胞分级分离与质谱联用作为鉴定病毒及其宿主之间蛋白质-蛋白质相互作用的一种选择.该方法涉及使用差异和/或梯度离心从无病毒和病毒感染的细胞中分离亚细胞细胞器(1),然后通过质谱对每个亚细胞细胞器获得的蛋白质组图谱进行比较分析(2)。经过生物验证,具有前病毒或抗病毒作用的前景宿主蛋白可以在基础生物学的背景下进行基础研究,以阐明病毒复制和细胞过程。它们也可以通过基因编辑来开发抗病毒作物。
    Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然RNA在体外是可溶的,当掺入细胞内的一些蛋白质复合物时,它们的溶解度可能会改变。因此,RNA的溶解度相变指示RNA的功能和活性的变化。这里,我们提出了一种评估非洲爪的卵母细胞成熟过程中RNA溶解度相变的方案.我们描述了样品制备的步骤,细胞分级分离,RNA提取,实时PCR,并对所得结果进行分析。有关此协议的使用和执行的完整详细信息,请参考Hwang等人。(2023).1。
    While RNAs are soluble in vitro, their solubility may be altered when incorporated into some protein complexes inside the cell. The solubility phase transition of RNAs is thus indicative of changes in the function and activity of RNAs. Here, we present a protocol for the assessment of RNA solubility phase transition during Xenopus oocyte maturation. We describe steps for sample preparation, cell fractionation, RNA extraction, real-time PCR, and analysis of the obtained results. For complete details on the use and execution of this protocol, please refer to Hwang et al. (2023).1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    REAP+是快速的增强版本,高效,和实用(REAP)方法设计用于分离核部分。这个改进的版本,REAP+,能够快速有效地提取线粒体,细胞质,和原子核。机械细胞破碎过程已针对脑组织进行了优化,速冻肝脏,和HT22细胞显著富集。REAP+非常适合含有最少蛋白质量的样品,如小鼠海马片。方法经Westernblot和标记酶活性验证,例如用于细胞质部分的LDH和G6PDH以及用于线粒体部分的琥珀酸脱氢酶和细胞色素C氧化酶。该方法的突出特点之一是其快速执行,在15分钟内产生馏分,允许同时制备多个样品。实质上,REAP+出现迅速,高效,以及同时分离原子核的实用技术,细胞质,和线粒体来自各种细胞类型和组织。该方法适用于研究蛋白质的多室易位,如代谢酶和转录因子从细胞质迁移到线粒体和细胞核。此外,它与小样品的兼容性,比如海马切片,以及它对人体活检的潜在适用性,突出了在医学研究中的潜在应用。
    REAP+ is an enhanced version of the rapid, efficient, and practical (REAP) method designed for the isolation of nuclear fractions. This improved version, REAP+, enables fast and effective extraction of mitochondria, cytoplasm, and nuclei. The mechanical cell disruption process has been optimized to cerebral tissues, snap-frozen liver, and HT22 cells with remarkable fraction enrichment. REAP+ is well-suited for samples containing minimal protein quantities, such as mouse hippocampal slices. The method was validated by Western blot and marker enzyme activities, such as LDH and G6PDH for the cytoplasmic fraction and succinate dehydrogenase and cytochrome c oxidase for the mitochondrial fraction. One of the outstanding features of this method is its rapid execution, yielding fractions within 15 min, allowing for simultaneous preparation of multiple samples. In essence, REAP+ emerges as a swift, efficient, and practical technique for the concurrent isolation of nuclei, cytoplasm, and mitochondria from various cell types and tissues. The method would be suitable to study the multicompartment translocation of proteins, such as metabolic enzymes and transcription factors migrating from cytosol to the mitochondria and nuclei. Moreover, its compatibility with small samples, such as hippocampal slices, and its potential applicability to human biopsies, highlights the potential application in medical research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质功能通常取决于其亚细胞定位。在革兰氏阴性菌如大肠杆菌中,蛋白质可以靶向五个不同的区室:细胞质,内膜,周质,外膜,和细胞外培养基。可以使用不同的方法来确定细胞内的蛋白质定位,例如蛋白质信号序列和基序的计算机识别,电子显微镜和免疫金标记,光学荧光显微镜,和生化技术。在这一章中,我们描述了一种简单有效的方法,通过分级分离方法分离大肠杆菌的不同区室,并确定感兴趣的蛋白质的存在。对于内膜蛋白,我们提出了一种区分完整膜蛋白和外周膜蛋白的方法。
    Protein function is generally dependent on its subcellular localization. In gram-negative bacteria such as Escherichia coli, a protein can be targeted to five different compartments: the cytoplasm, the inner membrane, the periplasm, the outer membrane, and the extracellular medium. Different approaches can be used to determine the protein localization within cell such as in silico identification of protein signal sequences and motifs, electron microscopy and immunogold labeling, optical fluorescence microscopy, and biochemical technics. In this chapter, we describe a simple and efficient method to isolate the different compartments of Escherichia coli by a fractionation method and to determine the presence of the protein of interest. For inner membrane proteins, we propose a method to discriminate between integral and peripheral membrane proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号