biosynthetic gene cluster

生物合成基因簇
  • 文章类型: Journal Article
    链霉菌属是次生代谢产物的有吸引力的来源,是抗生素和其他药物的主要来源。在这项研究中,基因组挖掘用于确定链霉菌的生物合成潜力。21So2-11分离自南极土壤。16SrRNA基因测序显示,该菌株与drozdowiczii链霉菌NBRC101007T最密切相关,相似度为98.02%。基于平均核苷酸同一性(ANI)和数字DNA-DNA杂交(dDDH)的基因组比较表明,菌株21So2-11代表链霉菌属的新物种。除了大量与环境适应和生态功能相关的基因,共有28个推定的生物合成基因簇(BGC)负责已知和/或新的次级代谢产物的生物合成,包括萜烯,抗肽,聚酮化合物,非核糖体肽,RiPP和铁载体,在菌株21So2-11的基因组中检测到。此外,根据来自极地地区的47个链霉菌菌株的基因组,预计总共有1456个BGC有助于300多种次生代谢产物的生物合成。结果表明链霉菌的潜力。21So2-11用于生物活性次级代谢产物的生产,有助于了解细菌在寒冷的陆地环境中的适应性和生态功能。
    Streptomyces species are attractive sources of secondary metabolites that serve as major sources of antibiotics and other drugs. In this study, genome mining was used to determine the biosynthetic potential of Streptomyces sp. 21So2-11 isolated from Antarctic soil. 16S rRNA gene sequencing revealed that this strain is most closely related to Streptomyces drozdowiczii NBRC 101007T, with a similarity of 98.02%. Genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strain 21So2-11 represents a novel species of the genus Streptomyces. In addition to a large number of genes related to environmental adaptation and ecological function, a total of 28 putative biosynthetic gene clusters (BGCs) responsible for the biosynthesis of known and/or novel secondary metabolites, including terpenes, lantipeptides, polyketides, nonribosomal peptides, RiPPs and siderophores, were detected in the genome of strain 21So2-11. In addition, a total of 1456 BGCs were predicted to contribute to the biosynthesis of more than 300 secondary metabolites based on the genomes of 47 Streptomyces strains originating from polar regions. The results indicate the potential of Streptomyces sp. 21So2-11 for bioactive secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold terrestrial environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:越来越多的研究表明,极地地区有可能成为微生物资源的重要储存库和活性成分的潜在来源。基因组挖掘策略在从微生物中发现生物活性次级代谢产物(SMs)中起着关键作用。这项工作强调了通过全基因组分析和抗SMASH以及全球天然产物社会分子网络(GNPS)中基于特征的分子网络(MN)的组合来破译北极海洋衍生菌株sydowiiMNP-2的生物合成潜力。
    结果:在这项研究中,成功获得了大小为34.9Mb的北极海洋菌株MNP-2的高质量全基因组序列。BRAKER软件预测的基因总数为13,218,非编码RNA(rRNA,sRNA,snRNA,使用INFERNAL软件预测的tRNA)为204。AntiSMASH结果表明,菌株MNP-2具有56个生物合成基因簇(BGC),包括18个NRPS/NRPS样基因簇,10个PKS/PKS样基因簇,8个萜烯合成基因簇,5吲哚合酶基因簇,10个杂种基因簇,和5个真菌-RiPP基因簇。使用GNPS网络在各种培养基上生长的菌株MNP-2的代谢分析显示,其在生物合成包含多种杂环和桥环结构的生物活性SM方面具有巨大潜力。例如,化合物G-8表现出有效的抗HIV作用,IC50值为7.2nM,EC50值为0.9nM。化合物G-6对K562、MCF-7、Hela、DU145,U1975,SGC-7901,A549,MOLT-4和HL60细胞系,IC50值范围为0.10至3.3µM,并显示出显著的抗病毒(H1N1和H3N2)活性,IC50值为15.9和30.0µM,分别。
    结论:这些发现肯定会提高我们对A.sydowii属分子生物学的认识,并将使用基因组学和代谢组学技术有效揭示菌株MNP-2的生物合成潜力。
    BACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS).
    RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively.
    CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    几项全球微生物组研究的实施已经对天然微生物群落的生物合成潜力产生了广泛的见解。然而,研究几类核糖体合成和翻译后修饰的肽(RiPP)的分布,不同大型微生物生态系统中的非核糖体肽(NRP)和聚酮(PKs)非常有限。这里,我们从海洋中收集了大量宏基因组组装的细菌基因组,淡水和陆地生态系统来研究这些细菌的生物合成潜力。我们展示了公共数据集集合在揭示这些不同生活环境中不同次生代谢物生物合成潜力方面的实用性。我们表明,在陆地系统中RiPP的发生率更高,在海洋系统中,我们发现了相对更多的尾翼-,NRP-,和PK编码基因簇。在许多新的生物合成基因簇(BGC)中,我们分析了各种Nif-11样和腈水合酶前导肽(NHLP)含有基因簇,值得进一步研究,包括有前途的产品,如墨塞西丁-,LAP-和蛋白类似物。这项研究强调了公共数据集在阐明不同生活环境中微生物的生物合成潜力方面的重要性,并强调了RiPP家族中广泛的生物工程机会。
    The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微生物次生代谢产物(SMs)及其衍生物已广泛应用于医药,农业,和能量。对可再生能源日益增长的需求以及抗生素耐药性带来的挑战,癌症,和农药强调对新SMs的关键狩猎。厌氧氨氧化(anammox)系统含有许多未培养或未充分开发的细菌,代表发现新型SM的潜在资源。利用HiFi长读宏基因组测序,从厌氧氨氧化微生物组中发现了1,040个生物合成基因簇(BGC),其中58%是完整的,并表现出丰富的多样性。他们中的大多数与已知的BGC有远亲关系,暗示新奇。未充分开发的谱系(Chloroflexota和Planctomycetota)和变形杆菌的成员包含大量的BGC,展示了巨大的生物合成潜力。元蛋白质组学结果表明,植物群成员携带最活跃的BGC,特别是那些参与生产潜在生物燃料的人。总的来说,这些发现强调了厌氧氨氧化微生物组可以作为开采新型BGC和发现实际应用的新SM的宝贵资源。
    Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    链霉菌物种以其产生具有多种生物活性和工业重要性的丰富次生代谢产物的能力而闻名。这些代谢物通常通过位于簇的基因编码的代谢途径进行生物合成。这些基因也被称为次级代谢物的生物合成基因簇(BGC)。BGC的表达是由锥体转录调控级联复杂的控制,其中包括各种监管机构。链霉菌属抗生素调节蛋白(SARPs),一个属特定的调节子家族,链霉菌分布广泛,在调节次生代谢产物的生物合成中起重要作用。在过去的十年里,SARPs的生物学功能已被广泛研究。这里,我们从以下三个方面总结了SARPs参与链霉菌次生代谢的研究进展。首先,根据大小变化对SARPs的分类和区域组织进行了总结。第二,我们详细介绍了参与次级代谢的SARPs的调节机制和作用模式.最后,通过改善目标次生代谢产物的生产和发现新型生物活性天然产物来说明SARPs的生物技术应用。这篇综述将有助于研究人员全面了解SARPs在链霉菌次生代谢产物生物合成中的作用。这将有助于为它们在合成生物学中的未来应用奠定坚实的基础。
    Streptomyces species are best known for their ability to produce abundant secondary metabolites with versatile bioactivities and industrial importance. These metabolites are usually biosynthesized through metabolic pathways encoded by cluster-situated genes. These genes are also known as biosynthetic gene clusters (BGCs) of secondary metabolites. The expression of BGCs is intricately controlled by pyramidal transcriptional regulatory cascades, which include various regulators. Streptomyces antibiotic regulatory proteins (SARPs), a genus-specific family of regulators, are widely distributed and play important roles in regulating the biosynthesis of secondary metabolites in Streptomyces. Over the past decade, the biological functions of SARPs have been extensively investigated. Here, we summarized the recent advances in characterizing the roles of SARPs involved in Streptomyces secondary metabolism from the following three aspects. First, the classification and domain organization of SARPs were summarized according to their size variation. Second, we presented a detailed description of the regulatory mechanisms and modes of action of SARPs involved in secondary metabolism. Finally, the biotechnological application of SARPs was illustrated by improving the production of target secondary metabolites and discovering novel bioactive natural products. This review will help researchers to comprehensively understand the roles of SARPs in secondary metabolite biosynthesis in Streptomyces, which will contribute to building a solid foundation for their future application in synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海洋细菌链霉菌属。HNS054有望成为生产天然产品的平台。从海洋海绵中分离出来,HNS054具有生物工程的几个理想特征:快速生长,耐盐性,以及与遗传工具的兼容性。它的基因组包含21个潜在的生物合成基因簇,提供丰富的天然产品来源。我们成功地设计了HNS054,使aborycin和actinorhodin的产量分别增加了4.5倍和1.2倍,分别,与S.coelicolorM1346同行相比。凭借其独特的功能和对遗传操作的适应性,HNS054成为开发新的海洋衍生药物和其他有价值的化合物的有希望的候选者。
    The marine bacterium Streptomyces sp. HNS054 shows promise as a platform for producing natural products. Isolated from a marine sponge, HNS054 possesses several desirable traits for bioengineering: rapid growth, salt tolerance, and compatibility with genetic tools. Its genome contains 21 potential biosynthetic gene clusters, offering a rich source of natural products. We successfully engineered HNS054 to increase the production of aborycin and actinorhodin by 4.5-fold and 1.2-fold, respectively, compared to S. coelicolor M1346 counterparts. With its unique features and amenability to genetic manipulation, HNS054 emerges as a promising candidate for developing novel marine-derived drugs and other valuable compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真菌非核糖体肽合成酶(NRPS)编码产物在新药发现中起着至关重要的作用。镰刀菌,最常见的丝状真菌之一,以其具有不同结构基序和各种生物学特性的NRPS型化合物的生物合成潜力而闻名。随着生物信息学工具的不断改进和广泛应用(例如,反SMASH,NCBI,UniProt),越来越多的次生代谢产物(SMs)生物合成基因簇(BGCs)在镰刀菌菌株中被鉴定出来。然而,迄今为止,这些SM的生物合成逻辑尚未得到很好的研究。为了增加我们对镰刀菌NPRS编码产品的生物合成逻辑的了解,本文首先概述了其生物合成途径的研究进展。
    Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    稀有放线菌作为新型生物活性次级代谢产物的潜在来源受到高度重视。在这些罕见的放线菌中,由于其能够产生多种生物活性次级代谢产物,因此特别值得注意。随着细菌基因组测序的不断进行和生物信息学技术的快速发展,我们对蔗糖素的次级代谢潜力的了解可以变得更加全面,但是这个空间还没有被审查或探索过。这篇综述详细介绍了138个糖原衍生的次级代谢产物的化学结构和生物活性,根据其生物合成途径分为五个不同的组。此外,我们深入研究了九种生物活性代谢物的实验表征的生物合成途径。通过利用化学信息学和生物信息学方法的组合,我们试图建立代谢产物家族和由蔗糖菌株编码的生物合成基因簇家族之间的联系。我们的分析提供了可以与相应的BGC相关的次级代谢产物的全面视角,并突出了糖原的未充分开发的生物合成潜力。本综述也为有针对性地发现和生物合成新型糖原天然产物提供了指导。
    Rare actinomycetes are highly valued as potential sources of novel bioactive secondary metabolites. Among these rare actinomycetes, the genus Saccharothrix is particularly noteworthy due to its ability to produce a diverse range of bioactive secondary metabolites. With the continuous sequencing of bacterial genomes and the rapid development of bioinformatics technologies, our knowledge of the secondary metabolic potential of Saccharothrix can become more comprehensive, but this space has not been reviewed or explored. This review presents a detailed overview of the chemical structures and bioactivities of 138 Saccharothrix-derived secondary metabolites, which are classified into five distinct groups based on their biosynthetic pathways. Furthermore, we delve into experimentally characterized biosynthetic pathways of nine bioactive metabolites. By utilizing a combination of cheminformatic and bioinformatic approaches, we attempted to establish connections between the metabolite families and the biosynthetic gene cluster families encoded by Saccharothrix strains. Our analysis provides a comprehensive perspective on the secondary metabolites that can be linked to corresponding BGCs and highlights the underexplored biosynthetic potential of Saccharothrix. This review also provides guidance for the targeted discovery and biosynthesis of novel natural products from Saccharothrix.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OctacosamicinA是一种抗真菌代谢物,其特征在于线性多烯多元醇链,侧翼为N-羟基胍和甘氨酸部分。我们在这里报告说,链霉素的亚抑制浓度引起了阿氮脲酰胺DSM43854T中八合霉素A的产生。我们确定了生物合成基因簇(ocaBGC),该基因簇编码模块聚酮化合物合酶(PKS)系统,用于组装八合卡霉素A的多烯多元醇链。我们的分析表明,N-羟基胍单元源自4-胍丁酰基-CoA起始单元,而PKS使用(2R)-羟基丙二酰-CoA延伸剂单元并入了α-羟基酮部分。模块化PKS系统包含一个缺乏硫酯酶(TE)和酰基载体蛋白(ACP)结构域的非规范末端模块,表明生物合成可能采用非常规和隐秘的卸载机制,该机制通过分子间酰胺化反应将甘氨酸连接到多烯多元醇链。
    Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲基杆菌物种,代表细菌分布在植物的叶球区域,经常合成类胡萝卜素来抵抗有害的紫外线辐射。已知甲基杆菌会产生类胡萝卜素色素,最近的研究表明这种类胡萝卜素具有C30骨架。然而,它的确切结构仍然未知。在本研究中,分离了由M.extorquensAM1产生的类胡萝卜素,并确定其结构为4-[2-O-11Z-十八碳烯酰基-β-吡喃葡萄糖基]-4,4'-二聚二羧酸(1),一种糖基化的C30类胡萝卜素。此外,研究了与C30类胡萝卜素合成相关的基因。角鲨烯,C30类胡萝卜素的前体,由META1p1815、META1p1816和META1p1817共同出现而合成。角鲨烯合成相关基因的进一步过表达提高了类胡萝卜素1的效价。通过基因缺失和基因互补实验,首先确认了糖基转移酶META1p3663和酰基转移酶META1p3664催化了从4,4'-二聚-4,4'-二甲酸到类胡萝卜素1的定制步骤。总之,首先对M.extorquensAM1产生的类胡萝卜素1的结构和生物合成基因进行了表征,这为工程M.敲诈AM1以高产率生产类胡萝卜素1提供了启示。
    Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4\'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4\'-diapolycopene-4,4\'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号