Plant Root Nodulation

植物根结瘤
  • 文章类型: Journal Article
    背景:豆类利用长距离信号反馈途径,称为结瘤自动调节(AON),调节它们与根瘤菌共生的建立和维持。已经发现了这种途径的几种关键蛋白质,但AON途径尚未完全了解。
    结果:我们报告了一种新的超结瘤突变体,自动调节有缺陷,随着基因的破坏,DAR(Medtr2g450550/MtrunA17_Chr2g0304631),以前不知道在AON中发挥作用。dar-1突变体产生的结节比野生型多十倍,与具有破坏的SUNN基因功能的AON突变体相似。就像在sunn突变体中一样,在dar中,CLE肽MtCLE12和MtCLE13对结瘤的抑制被废除。此外,dar-1还显示丛枝菌根真菌的根长定植增加,提示DAR在菌根共生(AOM)的自动调节中的作用。然而,与SUNN在拍摄中控制结瘤的功能不同,根中的DAR函数。
    结论:DAR编码一种膜蛋白,该蛋白是截尾支原体中一个小蛋白家族的成员。我们的结果表明,DAR可能参与参与共生调节的信号的亚细胞运输,但在共生过程中并没有上调。DAR基因家族成员也存在于拟南芥中,lycophytes,苔藓,和微藻,表明AON和AOM可能使用其他植物常见的途径成分,即使是那些没有经历共生的人。
    BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood.
    RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root.
    CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆类是生态和经济上重要的植物,有助于营养循环和农业可持续性。与固氮根瘤菌紧密共生的特征。根瘤菌的质量差异很大,从高度促进增长到非有益的;因此,豆科植物必须通过选择有益根瘤菌并将损失限制在非有益菌株的宿主机制来优化与根瘤菌的共生关系。从这个角度来看,我们研究了在根瘤菌的宿主控制解码方面取得的相当大的科学进展,实证研究分子和细胞机制及其对根瘤菌共生的影响及其好处。我们考虑感染前控制,这需要豆科植物产生和检测精确的分子信号,以吸引和选择相容的根瘤菌菌株。我们还讨论了感染后的机制,这些机制利用共生体的结节水平和细胞水平的区室化来实现宿主对植物根瘤菌发育和增殖的控制。这些寄主控制层通过将寄主资源引向更有益的根瘤菌的缩小子集,每个都有助于豆科植物的适应性。
    Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    豆科植物通过形成根瘤获得固氮能力。将这种能力转移到更多的作物上可以减少我们对氮肥的依赖,从而降低环境污染和农业生产成本。结节器官发生是复杂的,全面的转录组学图集对于理解潜在的分子事件至关重要。这里,我们利用空间转录组学研究了豆科植物模型中结节的发育,莲花。我们的研究已经确定了结节内两个关键区域的发育轨迹:感染区和外周组织。我们揭示了潜在的生物过程,并提供基因集以实现共生和物质交换,结瘤的两个基本方面。在候选调控基因中,我们说明了LjNLP3,一种属于类NIN蛋白家族的转录因子,协调结节从分化到成熟的过渡。总之,我们的研究促进了我们对根瘤器官发生的理解,并为开发共生固氮作物提供了有价值的数据。
    Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在氮限制条件下,寄主植物受益于豆科植物根瘤与固氮菌的共生。在这种互动中,寄主必须调节结节的数量和分布模式,以控制共生程度并维持根系生长功能。宿主对共生细菌的反应在生长的根尖后面的区域不连续但重复地发生。这里,活成像和转录组分析显示,细菌接种后,宿主基因表达以大约6小时的间隔振荡。细胞分裂素反应也表现出类似的振荡模式。细胞分裂素信号传导对于维持周期性至关重要,如在显示感染灶分布改变的细胞分裂素受体突变体中观察到的。这种周期性调节会影响对细菌有反应的根部区域的大小,以及结瘤过程的进展。
    Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    豆科植物和根瘤菌之间共生相互作用的建立需要由根瘤菌Nod因子(NFs)以及III型效应子(T3E)介导的共生信号激活的复杂细胞编程。然而,不同信号共同影响共生的机制尚不清楚。在这里,我们描述了介导广泛寄主根瘤菌中根瘤菌HH103T3E结瘤外部蛋白L(NopL)效应子和大豆中NF信号传导之间的串扰的机制。NopL与甘氨酸maxRemorin1a(GmREM1a)和NFs受体NFR5(GmNFR5)物理相互作用,并通过GmREM1a促进GmNFR5募集。此外,NopL和NF影响GmRINRK1的表达,GmRINRK1是LotusRINRK1的受体样激酶(LRR-RLK)直系同源物,可介导NF信号传导。一起来看,我们的工作表明,S.frediiNopL可以与NF信号级联组分相互作用,以促进大豆中的共生相互作用。
    The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物-根瘤菌共生提供了一种独特的方法来提高豆科作物的产量。先前的研究表明,在CO2浓度升高的情况下,大豆根瘤的数量会增加。然而,这种现象背后的潜在机制仍然难以捉摸。在这项研究中,转录组分析用于鉴定参与调节由升高的CO2浓度介导的大豆结瘤的候选基因。在不同的表达基因(DEG)中,我们确定了一个编码小的热休克蛋白(sHSP)的基因,称为GmHSP23.9,主要在大豆根和根瘤中表达,在升高的CO2条件下,接种后14天(DAI),根瘤菌USDA110感染可显着诱导其表达。我们通过产生携带GmHSP23.9过表达的转基因复合植物(GmHSP23.9-OE)进一步研究了GmHSP23.9的作用,RNA干扰(GmHSP23.9-RNAi),和CRISPR-Cas9(GmHSP23.9-KO),这些修饰导致根瘤数量和根毛变形的显着变化,表明GmHSP23.9在大豆中起着重要的正调节因子的作用。此外,我们发现改变GmHSP23.9的表达会影响Nod因子信号通路和AON信号通路相关基因的表达,从而调节大豆结瘤。有趣的是,我们发现,敲除GmHSP23.9可以防止大豆根瘤数增加,以响应CO2浓度升高。这项研究已经成功地确定了一种关键的调节剂,该调节剂在升高的CO2水平下影响大豆结瘤,并为sHSPs在豆科植物结瘤中的作用提供了新的思路。
    Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:大豆与固氮根际细菌建立了相互作用,通过共生固氮获得大部分氮需求。这种作物容易缺水;有证据表明,它的结瘤状态-无论是否结瘤-都会影响它对缺水的反应。已证明基因表达的翻译控制步骤与遭受水分亏缺的植物有关。
    结果:这里,我们分析了大豆根在转录时对水分亏缺的差异反应,翻译,和混合(转录+翻译)水平。因此,分析了四个联合处理的大豆根的转录组和翻译组。我们在结瘤和水分限制植物的翻译体水平上的差异表达基因(DEG)中发现了激素代谢相关基因。此外,加权基因共表达网络分析,然后进行差异表达分析,确定了与结瘤和缺水条件相关的基因模块。对与植物对结瘤反应相关的模块的混合DEG子集进行了蛋白质-蛋白质相互作用网络分析,缺水,或他们的组合。
    结论:我们的研究表明,上述植物反应中的突出过程和途径部分不同;与谷胱甘肽代谢和激素信号转导有关的术语(2C蛋白磷酸酶)与水分亏缺的反应有关,与跨膜运输相关的术语,对脱落酸的反应,色素代谢过程与结瘤和水分亏缺的反应有关。尽管如此,两个过程是常见的:半乳糖代谢和支链氨基酸分解代谢。对这些过程的全面分析可能会导致确定大豆耐旱性的新来源。
    BACKGROUND: Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit.
    RESULTS: Here, we analyzed soybean roots\' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination.
    CONCLUSIONS: Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三种硬紫花苜蓿LysM结构域受体激酶在结瘤中具有冗余功能,具有介导进入和信号传导反应的多种特异性,并且可能由于不同的转录模式而对结瘤有不同的贡献。
    Three Medicago truncatula LysM domain receptor kinases have redundant functions in nodulation, with multiple specificities mediating both entry and signaling responses and with distinct contributions to nodulation likely resulting from differing transcription patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,研究了E3泛素连接酶GmSNE3在抑制大豆结瘤中的作用。GmSNE3是由HSM胁迫强烈诱导的,GmSNE3的过表达显著降低了大豆结节的数量。进一步研究发现,GmSNE3可以与结瘤信号通路1蛋白(GmNSP1a)相互作用,GmSNE3可以介导GmNSP1a的降解。重要的是,HSM胁迫可促进GmSNE3介导的GmNSP1a降解。此外,HSM胁迫和GmSNE3的过表达导致GmNSP1a的下游靶基因的表达大幅降低。这些结果表明,HSM通过诱导GmSNE3促进泛素介导的GmNSP1a降解,从而抑制GmNSP1a对其下游靶基因的调节作用,并最终导致结瘤减少。我们的发现将促进更好地了解除草剂对豆科植物和根瘤菌之间共生结瘤的毒性机制。
    In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结论:该研究揭示了Si通过调节DEGs的调节影响,TFs,和TRs。进一步的bHLH亚家族和生长素转运蛋白途径阐明了促进根发育和结瘤的机制。大豆是全球重要的作物,是数百万人的植物蛋白的主要来源。这些植物的根部带有必需的固氮结构,称为结节。这项研究调查了硅(Si)应用对大豆的多方面影响,专注于根系发展,和结瘤采用全面的转录组学分析和基因调控网络。利用RNA序列分析来检查基因表达的变化,并鉴定与大豆根瘤和根发育增强有关的值得注意的差异表达基因(DEGs)。鉴定了一组涉及多种生物学和分子途径的316个基因,重点是转录因子(TFs)和转录调节因子(TRs)。这项研究揭示了TF和TR基因,分为68个不同的家庭,突出了大豆中受硅影响的复杂监管格局。上调最重要的bHLH亚家族和生长素转运蛋白途径的参与强调了有助于增强根发育和结瘤的分子机制。这项研究弥合了其他研究的见解,增强硅对应激反应途径和苯丙素生物合成的影响对结瘤至关重要。该研究揭示了与细胞成分功能相关的基因表达模式的显著改变,根系发育,和对Si的反应结瘤。
    CONCLUSIONS: The study unveils Si\'s regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si\'s impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号