Plant Root Nodulation

植物根结瘤
  • 文章类型: Journal Article
    豆科植物通过形成根瘤获得固氮能力。将这种能力转移到更多的作物上可以减少我们对氮肥的依赖,从而降低环境污染和农业生产成本。结节器官发生是复杂的,全面的转录组学图集对于理解潜在的分子事件至关重要。这里,我们利用空间转录组学研究了豆科植物模型中结节的发育,莲花。我们的研究已经确定了结节内两个关键区域的发育轨迹:感染区和外周组织。我们揭示了潜在的生物过程,并提供基因集以实现共生和物质交换,结瘤的两个基本方面。在候选调控基因中,我们说明了LjNLP3,一种属于类NIN蛋白家族的转录因子,协调结节从分化到成熟的过渡。总之,我们的研究促进了我们对根瘤器官发生的理解,并为开发共生固氮作物提供了有价值的数据。
    Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物和根瘤菌之间共生相互作用的建立需要由根瘤菌Nod因子(NFs)以及III型效应子(T3E)介导的共生信号激活的复杂细胞编程。然而,不同信号共同影响共生的机制尚不清楚。在这里,我们描述了介导广泛寄主根瘤菌中根瘤菌HH103T3E结瘤外部蛋白L(NopL)效应子和大豆中NF信号传导之间的串扰的机制。NopL与甘氨酸maxRemorin1a(GmREM1a)和NFs受体NFR5(GmNFR5)物理相互作用,并通过GmREM1a促进GmNFR5募集。此外,NopL和NF影响GmRINRK1的表达,GmRINRK1是LotusRINRK1的受体样激酶(LRR-RLK)直系同源物,可介导NF信号传导。一起来看,我们的工作表明,S.frediiNopL可以与NF信号级联组分相互作用,以促进大豆中的共生相互作用。
    The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物-根瘤菌共生提供了一种独特的方法来提高豆科作物的产量。先前的研究表明,在CO2浓度升高的情况下,大豆根瘤的数量会增加。然而,这种现象背后的潜在机制仍然难以捉摸。在这项研究中,转录组分析用于鉴定参与调节由升高的CO2浓度介导的大豆结瘤的候选基因。在不同的表达基因(DEG)中,我们确定了一个编码小的热休克蛋白(sHSP)的基因,称为GmHSP23.9,主要在大豆根和根瘤中表达,在升高的CO2条件下,接种后14天(DAI),根瘤菌USDA110感染可显着诱导其表达。我们通过产生携带GmHSP23.9过表达的转基因复合植物(GmHSP23.9-OE)进一步研究了GmHSP23.9的作用,RNA干扰(GmHSP23.9-RNAi),和CRISPR-Cas9(GmHSP23.9-KO),这些修饰导致根瘤数量和根毛变形的显着变化,表明GmHSP23.9在大豆中起着重要的正调节因子的作用。此外,我们发现改变GmHSP23.9的表达会影响Nod因子信号通路和AON信号通路相关基因的表达,从而调节大豆结瘤。有趣的是,我们发现,敲除GmHSP23.9可以防止大豆根瘤数增加,以响应CO2浓度升高。这项研究已经成功地确定了一种关键的调节剂,该调节剂在升高的CO2水平下影响大豆结瘤,并为sHSPs在豆科植物结瘤中的作用提供了新的思路。
    Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三种硬紫花苜蓿LysM结构域受体激酶在结瘤中具有冗余功能,具有介导进入和信号传导反应的多种特异性,并且可能由于不同的转录模式而对结瘤有不同的贡献。
    Three Medicago truncatula LysM domain receptor kinases have redundant functions in nodulation, with multiple specificities mediating both entry and signaling responses and with distinct contributions to nodulation likely resulting from differing transcription patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,研究了E3泛素连接酶GmSNE3在抑制大豆结瘤中的作用。GmSNE3是由HSM胁迫强烈诱导的,GmSNE3的过表达显著降低了大豆结节的数量。进一步研究发现,GmSNE3可以与结瘤信号通路1蛋白(GmNSP1a)相互作用,GmSNE3可以介导GmNSP1a的降解。重要的是,HSM胁迫可促进GmSNE3介导的GmNSP1a降解。此外,HSM胁迫和GmSNE3的过表达导致GmNSP1a的下游靶基因的表达大幅降低。这些结果表明,HSM通过诱导GmSNE3促进泛素介导的GmNSP1a降解,从而抑制GmNSP1a对其下游靶基因的调节作用,并最终导致结瘤减少。我们的发现将促进更好地了解除草剂对豆科植物和根瘤菌之间共生结瘤的毒性机制。
    In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    共生固氮可以通过减少化肥投入来减少农业对环境的影响。纳米材料在农业中的快速发展为我们提高豆科作物的生物固氮能力提供了新的前景。钼是固氮酶的重要成分,MoO3NP在农业中的潜在应用在很大程度上尚未开发。在这项研究中,在验证MoO3NPs能够提高大豆固氮能力的基础上,利用动态转录组和靶向代谢组技术研究了MoO3NPs对大豆共生固氮过程的影响。在这里我们表明,与常规钼肥相比,微量浓度的MoO3NPs(0.01-0.1mgkg-1)可以促进大豆的生长和固氮效率。结节数量,0.1mgkg-1的新鲜结节重量和固氮酶活性增加了17%,14%和27%,植株氮素积累量增加17%。与常规钼肥相比,MoO3NP对芹菜素的影响更大,山奈酚和其他类黄酮,和结瘤相关基因如ENOD93,F3\'H的表达。基于WGCNA分析,我们确定了一个核心基因GmCHS9,该基因对钼呈正反应,并且在MoO3NP诱导的结瘤过程中高度表达。MoO3NPs可以通过促进黄酮类化合物的分泌和关键基因的表达来提高大豆的固氮能力。该研究为根瘤发育和钼生物合成类黄酮的纳米强化策略提供了新的视角。
    Symbiotic nitrogen fixation can reduce the impact of agriculture on the environment by reducing fertilizer input. The rapid development of nanomaterials in agriculture provides a new prospect for us to improve the biological nitrogen fixation ability of leguminous crops. Molybdenum is an important component of nitrogenase, and the potential application of MoO3NPs in agriculture is largely unexplored. In this study, on the basis of verifying that MoO3NPs can improve the nitrogen fixation ability of soybean, the effects of MoO3NPs on the symbiotic nitrogen fixation process of soybean were investigated by using dynamic transcriptome and targeted metabolome techniques. Here we showed that compared with conventional molybdenum fertilizer, minute concentrations of MoO3NPs (0.01-0.1 mg kg-1) could promote soybean growth and nitrogen fixation efficiency. The nodules number, fresh nodule weight and nitrogenase activity of 0.1 mg kg-1 were increased by 17 %, 14 % and 27 %, and plant nitrogen accumulation increased by 17 %. Compared with conventional molybdenum fertilizer, MoO3NPs had a greater effect on apigenin, kaempferol and other flavonoid, and the expression of nodulation related genes such as ENOD93, F3\'H. Based on WGCNA analysis, we identified a core gene GmCHS9 that was positively responsive to molybdenum and was highly expressed during MoO3NPs induced nodulation. MoO3NPs could improve the nitrogen fixation ability of soybean by promoting the secretion of flavonoids and the expression of key genes. This study provided a new perspective for the nano-strengthening strategy of nodules development and flavonoid biosynthesis by molybdenum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    精确控制受体水平对于启动响应特定配体的细胞信号传导至关重要,然而,调控结瘤因子(NF)受体(NFR1/NFR5)感知NF建立共生的机制尚不清楚。这项研究揭示了NFR相互作用的RING型E3连接酶1(NIRE1)在调节NFR1/NFR5稳态以优化根瘤菌感染和根瘤发育中的关键作用。NIRE1在此调节过程中具有双重功能。NIRE1与NFR1/NFR5结合,在根瘤菌接种前通过K48连接的多泛素化促进其降解。根瘤菌接种后,NFR1在保守残基处磷酸化NIRE1,Tyr-109,在NIRE1中引起功能切换。该开关使NIRE1能够介导K63连接的聚泛素化,从而稳定受感染的根细胞中的NFR1/NFR5。磷死亡NIRE1Y109F的引入导致结节发育延迟,强调Tyr-109磷酸化在协调共生过程中的重要性。相反,磷酸化模拟物NIRE1Y109E的表达导致日本血吸虫自发结节的形成,进一步强调磷酸化依赖性功能开关在NIRE1中的关键作用。总之,这些发现提供了单一E3连接酶经历磷酸化依赖性功能开关的初步证据,动态和精确调节NF受体蛋白水平。
    The precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands; however, such mechanisms regulating nodulation factor (NF) receptor (NFR)-mediated perception of NFs to establish symbiosis remain unclear. In this study, we unveil the pivotal role of the NFR-interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. We demonstrated that NIRE1 has a dual function in this regulatory process. It associates with both NFR1 and NFR5, facilitating their degradation through K48-linked polyubiquitination before rhizobial inoculation. However, following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1, which enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1Y109F leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, expression of the phospho-mimic NIRE1Y109E results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings uncover a fine-tuned symbiotic mechanism that a single E3 ligase could undergo a phosphorylation-dependent functional switch to dynamically and precisely regulate NF receptor protein levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    共生固氮(SNF)对豆类至关重要,为它们提供植物生长和发育所需的氮。结瘤是建立SNF的第一步。然而,大豆结瘤中的决定基因和对控制结瘤的潜在分子机制的理解仍然有限。在这里,我们发现了一种磷酸酶,GmPP2C61A,这是由根瘤菌接种引起的。使用带有GmPP2C61A::GUS的转基因毛状根,结果表明,接种根瘤菌后,GmPP2C61A主要在表皮细胞中诱导。功能分析显示,敲除或敲除GmPP2C61A可显著减少结节的数量,而GmPP2C61A的过表达促进结节形成。此外,GmPP2C61A蛋白主要定位于细胞质中,在体外表现出保守的磷酸酶活性。我们的研究结果表明,磷酸酶GmPP2C61A是大豆结瘤的关键调节因子。强调其在增强共生固氮方面的潜在意义。
    Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物的根际系统拥有多样化的细菌群,对植物产生有益的影响,如植物生长促进根际细菌(PGPR),具有疾病抑制活性的生物控制剂,与根瘤形成共生的固氮菌。在植物中的有效定殖对于促进这些有益活动至关重要。然而,根定植的过程是复杂的,由多个阶段组成,包括趋化性,附着力,聚合,和生物膜的形成。第二信使,c-di-GMP(环双-(3'-5')二聚磷酸鸟苷),在多种生理过程中起着关键的调节作用。本文综述了近年来c-di-GMP在植物有益菌中的作用,特别关注它在趋化性中的作用,生物膜的形成,和结瘤。
    The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3\'-5\') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    豆科植物根瘤中的共生固氮需要寄主植物的大量能源投资,和大豆(甘氨酸max(L.)由于过度消耗碳源,超结瘤突变体表现出发育迟缓和产量损失。我们获得了不同结瘤能力的大豆突变体,其中根瘤菌诱导的cle1a/2a(ric1a/2a)结节数量适度增加,平衡的碳分配,并增强碳和氮的获取。在中国的多年和多地点田间试验中,两个ric1a/2a系提高了籽粒产量,蛋白质含量和持续的油含量,证明朝着最佳结瘤的基因编辑提高了大豆的产量和品质。
    Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号