关键词: Nodulation Root development Silicon (Si) application Soybean Transcription factors (TFs) Transcriptomic analysis

Mesh : Glycine max / genetics growth & development Gene Expression Regulation, Plant Gene Regulatory Networks Plant Root Nodulation / genetics Plant Roots / genetics growth & development Silicon / pharmacology Transcription Factors / genetics metabolism Gene Expression Profiling Plant Proteins / genetics metabolism Transcriptome / genetics

来  源:   DOI:10.1007/s00299-024-03250-7   PDF(Pubmed)

Abstract:
CONCLUSIONS: The study unveils Si\'s regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si\'s impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.
摘要:
结论:该研究揭示了Si通过调节DEGs的调节影响,TFs,和TRs。进一步的bHLH亚家族和生长素转运蛋白途径阐明了促进根发育和结瘤的机制。大豆是全球重要的作物,是数百万人的植物蛋白的主要来源。这些植物的根部带有必需的固氮结构,称为结节。这项研究调查了硅(Si)应用对大豆的多方面影响,专注于根系发展,和结瘤采用全面的转录组学分析和基因调控网络。利用RNA序列分析来检查基因表达的变化,并鉴定与大豆根瘤和根发育增强有关的值得注意的差异表达基因(DEGs)。鉴定了一组涉及多种生物学和分子途径的316个基因,重点是转录因子(TFs)和转录调节因子(TRs)。这项研究揭示了TF和TR基因,分为68个不同的家庭,突出了大豆中受硅影响的复杂监管格局。上调最重要的bHLH亚家族和生长素转运蛋白途径的参与强调了有助于增强根发育和结瘤的分子机制。这项研究弥合了其他研究的见解,增强硅对应激反应途径和苯丙素生物合成的影响对结瘤至关重要。该研究揭示了与细胞成分功能相关的基因表达模式的显著改变,根系发育,和对Si的反应结瘤。
公众号