Plant Root Nodulation

植物根结瘤
  • 文章类型: Journal Article
    背景:豆类利用长距离信号反馈途径,称为结瘤自动调节(AON),调节它们与根瘤菌共生的建立和维持。已经发现了这种途径的几种关键蛋白质,但AON途径尚未完全了解。
    结果:我们报告了一种新的超结瘤突变体,自动调节有缺陷,随着基因的破坏,DAR(Medtr2g450550/MtrunA17_Chr2g0304631),以前不知道在AON中发挥作用。dar-1突变体产生的结节比野生型多十倍,与具有破坏的SUNN基因功能的AON突变体相似。就像在sunn突变体中一样,在dar中,CLE肽MtCLE12和MtCLE13对结瘤的抑制被废除。此外,dar-1还显示丛枝菌根真菌的根长定植增加,提示DAR在菌根共生(AOM)的自动调节中的作用。然而,与SUNN在拍摄中控制结瘤的功能不同,根中的DAR函数。
    结论:DAR编码一种膜蛋白,该蛋白是截尾支原体中一个小蛋白家族的成员。我们的结果表明,DAR可能参与参与共生调节的信号的亚细胞运输,但在共生过程中并没有上调。DAR基因家族成员也存在于拟南芥中,lycophytes,苔藓,和微藻,表明AON和AOM可能使用其他植物常见的途径成分,即使是那些没有经历共生的人。
    BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood.
    RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root.
    CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物通过形成根瘤获得固氮能力。将这种能力转移到更多的作物上可以减少我们对氮肥的依赖,从而降低环境污染和农业生产成本。结节器官发生是复杂的,全面的转录组学图集对于理解潜在的分子事件至关重要。这里,我们利用空间转录组学研究了豆科植物模型中结节的发育,莲花。我们的研究已经确定了结节内两个关键区域的发育轨迹:感染区和外周组织。我们揭示了潜在的生物过程,并提供基因集以实现共生和物质交换,结瘤的两个基本方面。在候选调控基因中,我们说明了LjNLP3,一种属于类NIN蛋白家族的转录因子,协调结节从分化到成熟的过渡。总之,我们的研究促进了我们对根瘤器官发生的理解,并为开发共生固氮作物提供了有价值的数据。
    Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物和根瘤菌之间共生相互作用的建立需要由根瘤菌Nod因子(NFs)以及III型效应子(T3E)介导的共生信号激活的复杂细胞编程。然而,不同信号共同影响共生的机制尚不清楚。在这里,我们描述了介导广泛寄主根瘤菌中根瘤菌HH103T3E结瘤外部蛋白L(NopL)效应子和大豆中NF信号传导之间的串扰的机制。NopL与甘氨酸maxRemorin1a(GmREM1a)和NFs受体NFR5(GmNFR5)物理相互作用,并通过GmREM1a促进GmNFR5募集。此外,NopL和NF影响GmRINRK1的表达,GmRINRK1是LotusRINRK1的受体样激酶(LRR-RLK)直系同源物,可介导NF信号传导。一起来看,我们的工作表明,S.frediiNopL可以与NF信号级联组分相互作用,以促进大豆中的共生相互作用。
    The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:大豆与固氮根际细菌建立了相互作用,通过共生固氮获得大部分氮需求。这种作物容易缺水;有证据表明,它的结瘤状态-无论是否结瘤-都会影响它对缺水的反应。已证明基因表达的翻译控制步骤与遭受水分亏缺的植物有关。
    结果:这里,我们分析了大豆根在转录时对水分亏缺的差异反应,翻译,和混合(转录+翻译)水平。因此,分析了四个联合处理的大豆根的转录组和翻译组。我们在结瘤和水分限制植物的翻译体水平上的差异表达基因(DEG)中发现了激素代谢相关基因。此外,加权基因共表达网络分析,然后进行差异表达分析,确定了与结瘤和缺水条件相关的基因模块。对与植物对结瘤反应相关的模块的混合DEG子集进行了蛋白质-蛋白质相互作用网络分析,缺水,或他们的组合。
    结论:我们的研究表明,上述植物反应中的突出过程和途径部分不同;与谷胱甘肽代谢和激素信号转导有关的术语(2C蛋白磷酸酶)与水分亏缺的反应有关,与跨膜运输相关的术语,对脱落酸的反应,色素代谢过程与结瘤和水分亏缺的反应有关。尽管如此,两个过程是常见的:半乳糖代谢和支链氨基酸分解代谢。对这些过程的全面分析可能会导致确定大豆耐旱性的新来源。
    BACKGROUND: Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit.
    RESULTS: Here, we analyzed soybean roots\' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination.
    CONCLUSIONS: Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:该研究揭示了Si通过调节DEGs的调节影响,TFs,和TRs。进一步的bHLH亚家族和生长素转运蛋白途径阐明了促进根发育和结瘤的机制。大豆是全球重要的作物,是数百万人的植物蛋白的主要来源。这些植物的根部带有必需的固氮结构,称为结节。这项研究调查了硅(Si)应用对大豆的多方面影响,专注于根系发展,和结瘤采用全面的转录组学分析和基因调控网络。利用RNA序列分析来检查基因表达的变化,并鉴定与大豆根瘤和根发育增强有关的值得注意的差异表达基因(DEGs)。鉴定了一组涉及多种生物学和分子途径的316个基因,重点是转录因子(TFs)和转录调节因子(TRs)。这项研究揭示了TF和TR基因,分为68个不同的家庭,突出了大豆中受硅影响的复杂监管格局。上调最重要的bHLH亚家族和生长素转运蛋白途径的参与强调了有助于增强根发育和结瘤的分子机制。这项研究弥合了其他研究的见解,增强硅对应激反应途径和苯丙素生物合成的影响对结瘤至关重要。该研究揭示了与细胞成分功能相关的基因表达模式的显著改变,根系发育,和对Si的反应结瘤。
    CONCLUSIONS: The study unveils Si\'s regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si\'s impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:预计降雪和气温变化的增加将使越冬草本植物在一些北温带地区遭受更严重的冰冻。豆科植物是一个关键的官能团,可能比这些地区的其他物种表现出更低的耐冻性,但这种趋势仅在非本地豆类中观察到。我们的目的是确认这种趋势是否仅限于非本地豆类,或者这些地区的本地豆类是否也表现出低的耐冻性。
    方法:首先,我们将豆科植物(五个非本地物种和四个本地物种)移植到旧田地(非本地)或草原(本地)中,并使用除雪将地块暴露于增加的土壤冻结中。第二,我们在mesocosms(老田)和盆栽(草原物种)中种植植物,并将它们暴露在受控环境室中进行一系列冷冻处理(对照,0,-5或-10°C)在冬季或春季。我们通过比较生物量的差异来评估冻结反应,冷冻(或除雪)处理和控制之间的覆盖和结瘤。
    结果:在豆科植物种类中,较低的耐冻性与较低的结瘤植物和活跃结节比例呈正相关,在受控条件下,天然豆科植物中冻结引起的地上生物量减少平均低于非天然豆科植物。然而,非本地豆科植物和本地豆科植物(除加拿大山楂属植物外)比非豆科植物的近邻因冻结增加而表现出更大的生物量减少,在受控环境和现场。
    结论:这些结果表明,相对于北部温带植物群落中的其他草本物种,本地和非本地豆科植物均表现出较低的耐冻性。通过减少豆类生物量和结瘤,增加土壤冻结可以减少这些系统的氮输入。
    OBJECTIVE: Reduced snow cover and increased air temperature variability are predicted to expose overwintering herbaceous plants to more severe freezing in some northern temperate regions. Legumes are a key functional group that may exhibit lower freezing tolerance than other species in these regions, but this trend has been observed only for non-native legumes. Our aim was to confirm if this trend is restricted to non-native legumes or whether native legumes in these regions also exhibit low freezing tolerance.
    METHODS: First, we transplanted legumes (five non-native species and four native species) into either an old field (non-native) or a prairie (native) and used snow removal to expose the plots to increased soil freezing. Second, we grew plants in mesocosms (old field) and pots (prairie species) and exposed them in controlled environment chambers to a range of freezing treatments (control, 0, -5 or -10 °C) in winter or spring. We assessed freezing responses by comparing differences in biomass, cover and nodulation between freezing (or snow removal) treatments and controls.
    RESULTS: Among legume species, lower freezing tolerance was positively correlated with a lower proportion of nodulated plants and active nodules, and under controlled conditions, freezing-induced reductions in above-ground biomass were lower on average in native legumes than in non-native legumes. Nevertheless, both non-native and native legumes (except Desmodium canadense) exhibited greater reductions in biomass in response to increased freezing than their non-leguminous neighbours, both in controlled environments and in the field.
    CONCLUSIONS: These results demonstrate that both native and non-native legumes exhibit low freezing tolerance relative to other herbaceous species in northern temperate plant communities. By reducing legume biomass and nodulation, increased soil freezing could reduce nitrogen inputs into these systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自由生活细菌的生物固氮和根瘤菌与豆科植物的共生在可持续作物生产中起着关键作用。这里,我们研究了不同的作物组合如何通过自由生活和共生固氮菌的代谢产物沉积和功能反应来影响花生植物与其根际微生物群之间的相互作用。基于长期(8年)多样化种植田间试验,我们发现,花生与玉米和油菜共培养导致花生根际代谢谱、细菌功能和结瘤的特定变化。花生中类黄酮和香豆素由于苯丙素生物合成途径的活化而积累。这些变化增强了自由生活细菌分离株的生长和固氮活性,和共生缓生根瘤菌分离株的根瘤形成。花生植物根部代谢物与缓生根瘤菌分离物相互作用,从而引发结瘤。我们的发现表明,定制的间作可用于通过改变根际微生物组及其功能来改善土壤氮的有效性。
    Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    某些豆科植物为根瘤菌入侵根并形成固氮根瘤提供了特殊途径,称为侧根基部(LRB)结瘤的过程。该途径涉及侧根与主根交界处的细胞间感染,导致侧根皮层结节形成。值得注意的是,这种LRB途径是各种适应性共生过程的骨架。这里,我们描述了LRB结瘤的不同方面,并强调了未来研究的方向,以阐明这种鲜为人知但原始途径的机制,这将有助于扩大我们对根瘤菌-豆科植物共生的认识。
    Certain legumes provide a special pathway for rhizobia to invade the root and develop nitrogen-fixing nodules, a process known as lateral root base (LRB) nodulation. This pathway involves intercellular infection at the junction of the lateral roots with the taproot, leading to nodule formation in the lateral root cortex. Remarkably, this LRB pathway serves as a backbone for various adaptative symbiotic processes. Here, we describe different aspects of LRB nodulation and highlight directions for future research to elucidate the mechanisms of this as yet little known but original pathway that will help in broadening our knowledge on the rhizobium-legume symbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物具有与土壤根瘤菌建立固氮共生关系的能力,结节。在大多数根瘤菌-豆科植物相互作用中,结节发生在根部。然而,在湿地中生长的某些热带豆科植物具有独特的特征:在茎上形成根瘤菌的能力。尽管茎结瘤过程具有独创性,其在耐涝豆科植物中的发生和多样性仍未得到充分探索,阻碍了对其遗传学和生物学的全面分析。这里,我们旨在通过调查马达加斯加豆类物种丰富的湿地中的茎结瘤来填补这一空白。在豆科植物属的八个水生植物中很容易观察到茎结瘤,Aeschynomene和Sesbania,记录了茎结节密度和形态的显着变化。在这些物种中,A.evenia,作为研究根瘤菌共生的遗传模型,被发现经常是茎结瘤的。另外两个埃斯切诺曼物种,A.cristata和A.uniflora,被证明显示出大量的茎结瘤,就像S.rostrata一样。这些发现扩展了我们对具有茎结瘤的豆科植物物种的了解,并进一步表明A.evenia,A.cristata,A.uniflora和S.rostrata对茎结瘤的研究特别感兴趣。因此,这些豆类物种代表了研究固氮共生不同模式的机会,这些知识可以为非豆类作物的固氮工程提供线索。
    Legumes have the ability to establish a nitrogen-fixing symbiosis with soil rhizobia that they house in specific organs, the nodules. In most rhizobium-legume interactions, nodulation occurs on the root. However, certain tropical legumes growing in wetlands possess a unique trait: the capacity to form rhizobia-harbouring nodules on the stem. Despite the originality of the stem nodulation process, its occurrence and diversity in waterlogging-tolerant legumes remains underexplored, impeding a comprehensive analysis of its genetics and biology. Here, we aimed at filling this gap by surveying stem nodulation in legume species-rich wetlands of Madagascar. Stem nodulation was readily observed in eight hydrophytic species of the legume genera, Aeschynomene and Sesbania, for which significant variations in stem nodule density and morphology was documented. Among these species, A. evenia, which is used as genetic model to study the rhizobial symbiosis, was found to be frequently stem-nodulated. Two other Aeschynomene species, A. cristata and A. uniflora, were evidenced to display a profuse stem-nodulation as occurs in S. rostrata. These findings extend our knowledge on legumes species that are endowed with stem nodulation and further indicate that A. evenia, A. cristata, A. uniflora and S. rostrata are of special interest for the study of stem nodulation. As such, these legume species represent opportunities to investigate different modalities of the nitrogen-fixing symbiosis and this knowledge could provide cues for the engineering of nitrogen-fixation in non-legume crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    固氮,通过根瘤中豆科植物和根瘤菌之间的共生关系发生,对可持续农业至关重要。低水平的磷胁迫会影响结瘤和大豆生产。在这项研究中,我们发现了一个MADS转录因子,GmAGL82在结节中优先表达,并且在磷酸盐(Pi)缺乏的条件下表现出显著增加的表达。GmAGL82在复合转基因植物中的过表达导致结节数量增加,较高的新鲜重量,和提高可溶性Pi浓度,随后增加了氮含量,磷含量,和大豆植物的整体生长。此外,转录组分析表明,GmAGL82的过表达显著上调与结节生长相关的基因的表达,例如GmENOD100、GmHSP17.1、GmHSP17.9、GmSPX5和GmPIN9d。基于这些发现,我们的结论是,GmAGL82可能参与了磷信号通路,并正调控大豆的结瘤.本研究结果可为进一步研究酸性土壤中营养高效大豆品种的遗传改良和候选基因资源奠定理论基础。
    Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号