lab-on-a-chip

实验室芯片
  • 文章类型: Journal Article
    在预计未来全球人口增长的背景下,提高农业食品产量至关重要。植物病害显著影响作物生产和粮食安全。现代微流体为检测这些缺陷提供了紧凑且方便的方法。尽管这一领域仍处于起步阶段,很少有全面的评论探讨这一主题,实践研究潜力巨大。本文回顾了这些原则,材料,以及微流控技术在检测各种病原体引起的植物病害中的应用。它在实现分离方面的表现,富集,并对不同病原体的检测进行了深入的讨论,以揭示其前景。凭借其多功能的设计,微流体已经发展为快速,敏感,和低成本的植物病害监测。包含用于分离的模块,预浓缩,扩增,检测可以早期发现微量病原体,加强作物安全。与成像系统耦合,智能和数字设备越来越多地被报道为先进的解决方案。
    In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微流体,也称为芯片实验室,代表了一个新兴的研究平台,允许更精确和操纵样品在微米尺度或甚至下降到纳米尺度(纳米流体),包括皮升液滴,微粒,和微生物在小型化和高度集成的设备。这项开创性的技术通过提供前所未有的物理视图,在多个学科中取得了重大进展,化学,和生物事件,培养对复杂系统的全面和深入的理解。应用微流体技术应对环境科学中的挑战可能有助于我们更好地理解,然而,它还没有完全发展。为了提高研究人员的兴趣,本讨论首先描述了微流体技术的有价值和未充分利用的环境应用,从环境监测到用作研究界面动态过程的微反应器,并促进高通量生物测定。我们强调,例如,合理设计的微流体设备如何为环境科学和技术的进步带来新的见解。然后,我们批判性地回顾了阻碍微流体技术实际采用的关键挑战。具体来说,我们讨论了微流体准确反映现实环境情景的程度,概述需要改进的领域,并提出克服阻碍微流体广泛应用的瓶颈的策略。我们还设想了新的机会和未来的研究方向,旨在为微流体在环境研究中的更广泛利用提供指导。
    Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it\'s not yet fully developed. To raise researchers\' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心力衰竭是发达国家和发展中国家住院和死亡的主要原因。通常需要心脏移植作为唯一可行的恢复途径。尽管移植医学取得了进展,器官排斥仍然是一个重要的术后挑战,传统上通过侵入性心内膜活检(EMB)进行监测。这项研究介绍了一种通过传感器集成的柔性贴片进行器官排斥监测的快速原型方法,采用电阻抗谱(EIS)进行非侵入性,连续评估指示组织排斥过程的电阻和电容变化。利用二氧化钛涂层电极进行非接触式阻抗传感,此方法旨在减轻与EMB相关的限制,包括程序风险和患者的心理负担。生物传感器的设计特点,包括电极钝化和三维微电极突起,通过与心脏的曲率对齐并响应肌肉收缩,促进心脏排斥反应的有效监测。利用SPICE模拟评估传感器性能,扫描电子显微镜,和循环伏安法,使用鸡心脏组织模拟健康和排斥状态的实验验证。该研究强调了EIS在减少对侵入性活检程序的需求方面的潜力,并为早期发现和监测器官排斥提供了有希望的途径。对患者护理和医疗资源利用有影响。
    Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial biopsies (EMB). This study introduces a rapid prototyping approach to organ rejection monitoring via a sensor-integrated flexible patch, employing electrical impedance spectroscopy (EIS) for the non-invasive, continuous assessment of resistive and capacitive changes indicative of tissue rejection processes. Utilizing titanium-dioxide-coated electrodes for contactless impedance sensing, this method aims to mitigate the limitations associated with EMB, including procedural risks and the psychological burden on patients. The biosensor\'s design features, including electrode passivation and three-dimensional microelectrode protrusions, facilitate effective monitoring of cardiac rejection by aligning with the heart\'s curvature and responding to muscle contractions. Evaluation of sensor performance utilized SPICE simulations, scanning electron microscopy, and cyclic voltammetry, alongside experimental validation using chicken heart tissue to simulate healthy and rejected states. The study highlights the potential of EIS in reducing the need for invasive biopsy procedures and offering a promising avenue for early detection and monitoring of organ rejection, with implications for patient care and healthcare resource utilization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肺炎军团菌已被世界卫生组织确定为欧盟所有水传播病原体中最高的健康负担,并且是全球许多疾病爆发的原因。今天,标准分析方法(基于细菌培养在琼脂平板上)需要几天(〜12)在专门的分析实验室产生的结果,不允许及时采取行动防止疫情爆发。在过去的几十年里,已经做出了巨大的努力来开发更有效的水传播病原体诊断和更快的分析方法,需要进一步改进微流体和传感器,快速,准确,便宜,实时,和现场方法。在这里,通过容纳细菌捕获来集成样品制备的芯片实验室装置,裂解,和DNA等温扩增快速(小于3小时)和高度敏感,提出了水样中嗜肺乳杆菌的比色终点检测,在需要的时候使用。该方法基于在芯片上固定和冻干的抗体上选择性捕获活细菌,裂解,DNA的环介导扩增(LAMP),通过颜色变化进行终点检测,肉眼可观察,并通过计算图像分析半量化。竞争优势得到证明,如低试剂消耗,便携性和一次性,颜色变化,储存在RT,并遵守现行法律。
    Legionella pneumophila has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods. Herein, a lab-on-a-chip device integrating sample preparation by accommodating bacteria capture, lysis, and DNA isothermal amplification with fast (less than 3 h) and highly sensitive, colorimetric end-point detection of L. pneumophila in water samples is presented, for use at the point of need. The method is based on the selective capture of viable bacteria on on-chip-immobilized and -lyophilized antibodies, lysis, the loop-mediated amplification (LAMP) of DNA, and end-point detection by a color change, observable by the naked eye and semiquantified by computational image analysis. Competitive advantages are demonstrated, such as low reagent consumption, portability and disposability, color change, storage at RT, and compliance with current legislation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着COVID-19限制的放松,其他呼吸道病毒,如流感和呼吸道合胞病毒(RSV),由于COVID-19的预防措施,其传播量减少,再次上升。由于相似的临床特征和报告的合并感染,SARS-CoV-2,甲型/乙型流感,和RSV需要使用特定的治疗。该研究评估了使用rRT-PCR进行多重检测的无提取样品制备(在95°C热处理3分钟)。尽管与标准方法相比,观察到的Ct延迟(ΔCt)平均为1.26,可接受的总灵敏度为92%,阴性预测值(NPV)为96%.此外,在微流控芯片上的实现证明了效率,与标准方法保持良好的相关性(R2=0.983)。将这种无提取程序与微流体芯片上的rRT-PCR相结合似乎很有希望,因为它简化了设计并降低了用于SARS-CoV-2,流感A/B多重检测的集成检测的成本和复杂性,RSV
    Following the relaxation of COVID-19 restrictions, other respiratory viruses such as influenza and respiratory syncytial virus (RSV), whose transmission were decreased due to COVID-19 precautions, are rising again. Because of similar clinical features and reported co-infections, multiplex detection of SARS-CoV-2, influenza A/B, and RSV is required to use specific treatments. This study assessed an extraction-free sample preparation (heat treatment at 95°C for 3 minutes) for multiplex detection using rRT-PCR. Despite an observed Ct-delay (∆Ct) averageing 1.26 compared to the standard method, an acceptable total sensitivity of 92 % and a negative predictive value (NPV) of 96 % were obtained. Moreover, Implementation on a microfluidic chip demonstrated efficiency, maintaining an excellent correlation (R2=0.983) with the standard method. Combining this extraction-free procedure with rRT-PCR on a microfluidic chip seems promising, because it simplifies the design and reduces the cost and complexity of the integrated assay for multiplex detection of SARS-CoV-2, influenza A/B, and RSV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这篇综述报道了利用表面增强拉曼散射(SERS)检测进行疾病诊断的多种微流体系统。集成SERS检测技术,提供高灵敏度检测,和微流控技术在微型设备中操纵小液体样品已经扩展了以前局限于更大设置的分析能力。本研究探讨了过去二十年来开发的各种基于SERS的微流体设备的原理和用途。具体来说,我们研究了有文献记载的基于SERS的微流体装置的工作原理,包括连续流通道,微阵列嵌入的微流体通道,液滴微流体通道,数字液滴通道,和梯度微流体通道。我们还研究了它们在生物医学诊断中的应用。总之,我们总结了需要进一步发展的领域,以将这些基于SERS的微流体技术转化为临床诊断的实际应用。
    This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症是21世纪死亡的主要原因之一,癌症转移归因于90%的癌症相关死亡。因此,为了改善患者的治疗效果,需要更好的临床前模型,以提高肿瘤治疗在临床应用的成功率.当前传统的静态体外模型缺乏可灌注网络,该网络对于克服扩散传质极限至关重要,以提供交换必需营养素和废物去除的机制。并增加它们的生理相关性。此外,这些模型通常缺乏细胞异质性和免疫系统和肿瘤微环境的关键组成部分。这篇综述探讨了利用可灌注微生理系统(MPS)研究癌细胞转移的快速发展策略。在这篇综述中,我们初步概述了癌症转移的机制,强调关键步骤并确定我们对转移级联的理解中的当前差距,探索MPS的重点是研究转移级联的各个步骤,然后详细介绍可以研究级联多个组成部分的最新MPS。然后,这篇综述集中在可能影响为癌症应用设计的MPS性能的因素上,最后讨论总结了将MPS用于癌症模型的挑战和未来方向。
    Cancer is one of the leading causes of death in the 21st century, with metastasis of cancer attributing to 90% of cancer-related deaths. Therefore, to improve patient outcomes there is a need for better preclinical models to increase the success of translating oncological therapies into the clinic. Current traditional staticin vitromodels lack a perfusable network which is critical to overcome the diffusional mass transfer limit to provide a mechanism for the exchange of essential nutrients and waste removal, and increase their physiological relevance. Furthermore, these models typically lack cellular heterogeneity and key components of the immune system and tumour microenvironment. This review explores rapidly developing strategies utilising perfusable microphysiological systems (MPS) for investigating cancer cell metastasis. In this review we initially outline the mechanisms of cancer metastasis, highlighting key steps and identifying the current gaps in our understanding of the metastatic cascade, exploring MPS focused on investigating the individual steps of the metastatic cascade before detailing the latest MPS which can investigate multiple components of the cascade. This review then focuses on the factors which can affect the performance of an MPS designed for cancer applications with a final discussion summarising the challenges and future directions for the use of MPS for cancer models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鉴于实验室在许多领域的重要性日益增加,如医学诊断或环境分析,事实上,目前的制造过程主要依赖于油基聚合物引起了生态问题。作为一种对生态负责的选择,我们提出,在这篇文章中,从壳聚糖制造微流体装置的过程,生物来源的,可生物降解,和生物相容性多糖。从壳聚糖粉末,我们生产了厚而硬的薄膜。为了防止它们溶解并减少与水溶液接触时的膨胀,我们研究了薄膜中和步骤,并表征了所得薄膜的机械和物理性能。在这些中和的壳聚糖膜上,我们比较了两种微图案化方法,即,热压花和机械微钻孔,基于从100µm到1000µm宽的微通道的分辨率。然后,将具有微钻孔通道的壳聚糖膜使用生物相容的干光致抗蚀剂粘合在载玻片或另一种中和的壳聚糖膜上。多亏了这个协议,首先制备了功能性壳聚糖微流控器件。虽然制造工艺的一些步骤仍有待改进,这些初步结果为芯片上实验室的可持续制造铺平了道路。
    Given the growing importance of lab-on-a-chip in a number of fields, such as medical diagnosis or environmental analysis, the fact that the current fabrication process relies mainly on oil-based polymers raises an ecological concern. As an eco-responsible alternative, we presented, in this article, a manufacturing process for microfluidic devices from chitosan, a bio-sourced, biodegradable, and biocompatible polysaccharide. From chitosan powder, we produced thick and rigid films. To prevent their dissolution and reduce their swelling when in contact with aqueous solutions, we investigated a film neutralization step and characterized the mechanical and physical properties of the resulting films. On these neutralized chitosan films, we compared two micropatterning methods, i.e., hot embossing and mechanical micro-drilling, based on the resolution of microchannels from 100 µm to 1000 µm wide. Then, chitosan films with micro-drilled channels were bonded using a biocompatible dry photoresist on a glass slide or another neutralized chitosan film. Thanks to this protocol, the first functional chitosan microfluidic devices were prepared. While some steps of the fabrication process remain to be improved, these preliminary results pave the way toward a sustainable fabrication of lab-on-a-chip.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    收缩膜是聚苯乙烯塑料的薄片,加热时会收缩到其原始尺寸的25-40%。这项研究调查了薄膜在不同温度和烘烤时间下的收缩因子,以确定用于收缩膜微流体设备生产的最佳制造配方。此外,这项研究表征了收缩膜的性能,包括最小可能的特征尺寸和横截面几何形状,使用手动雕刻和CAMEO4自动切割机。在150°C和4分钟的烘烤时间下,最佳收缩因子范围为1.7至2.9,生产微流体设备制造的理想尺寸。X轴和Y轴缩小了约2.5倍,而Z轴增厚了~5.8倍。这项研究实现了200微米的最小特征尺寸,受收缩时通道侧壁塌陷的限制,导致微通道阻塞。这些发现证明了使用收缩膜作为快速制造微流体装置的成本有效且有效的材料的可行性和多功能性。这种材料在医疗和生物医学工业等各个领域的潜在应用,细菌和藻类的培养和计数值得注意。
    Shrink film is a thin sheet of polystyrene plastic that shrinks to 25-40% of its original size when heated. This study investigated the shrinkage factor of the film at different temperatures and baking times to determine the optimal fabrication recipe for shrink film microfluidic device production. Additionally, this study characterized the properties of shrink film, including minimum possible feature size and cross-section geometries, using manual engraving and the CAMEO 4 automated cutting machine. The optimal shrinkage factor ranged from 1.7 to 2.9 at 150 °C and a baking time of 4 min, producing the ideal size for microfluidic device fabrication. The X- and Y-axes shrank ~2.5 times, while Z-axis thickened by a factor of ~5.8 times. This study achieved a minimum feature size of 200 microns, limited by the collapsing of channel sidewalls when shrunk, leading to blockages in the microchannel. These findings demonstrate the feasibility and versatility of using shrink film as a cost-effective and efficient material for the rapid fabrication of microfluidic devices. The potential applications of this material in various fields such as the medical and biomedical industries, bacteria and algae culture and enumeration are noteworthy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微流控技术已经成为一种适用于各种应用的强大技术,从生物医学诊断到化学分析。在可用于在微流体尺度上分析样品的不同表征技术中,由于其非侵入性,光子检测技术和片上配置的耦合特别有利,允许敏感,实时,高吞吐量,和快速分析,利用微流体的特殊环境和减少的样品体积。特别强调集成检测方案,这篇评论文章探讨了UV-vis片上实现中最相关的进展,近红外,太赫兹,以及基于X射线的不同表征技术,从点状光谱或基于散射的测量到不同类型的映射/成像。通过在不同系统中的应用,讨论了这些技术的原理及其兴趣。
    Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号