avian viruses

禽类病毒
  • 文章类型: Journal Article
    2024年3月,在美国的奶牛中检测到2.3.4.4bH5N1高致病性禽流感病毒(HPAIV),人们发现可以在原料奶中检测到病毒。尽管受影响的牛奶被从人类消费中转移,目前的巴氏灭菌要求有望减少或消除牛奶供应中的传染性HPAIV,进行了一项研究,以确定是否可以通过定量实时RT-PCR(qrRT-PCR)在巴氏杀菌的零售乳制品中检测到病毒,如果检测到,以确定病毒是否存活。从2024年4月18日至4月22日,共从美国17个州收集了297份经过巴氏杀菌的零售奶制品(23种产品类型),代表了来自38个州132个加工商的产品。在60个样本中检测到病毒RNA(20.2%),基于qrRT-PCR的数量估计(非感染性)高达5.4log1050%的鸡蛋感染剂量/mL,平均值和中位数为3.0log10/mL和2.9log10/mL,分别。通过qrRT-PCR对A型流感呈阳性的样品通过qrRT-PCR确认为进化枝2.3.4.4H5HPAIV。在胚胎鸡蛋的任何qrRT-PCR阳性样品中均未检测到感染性病毒。需要进一步的研究来监测牛奶供应,但这些结果提供的证据表明,在对奶牛实施HPAIV控制措施之前,感染性病毒并未进入美国巴氏杀菌乳供应.IMPORTANCE2024年3月首次确认了美国奶牛的高致病性禽流感病毒(HPAIV)感染。因为病毒可以在原料奶中检测到,进行了一项研究,以确定它是否已进入零售食品供应。2024年4月从17个州收集了巴氏杀菌乳制品。在五分之一的样本中检测到病毒RNA,但是没有检测到传染性病毒。这提供了事件早期牛奶产品中HPAIV的快照,并通过当前的安全措施加强了这一点,牛奶中的传染性病毒不太可能进入食物供应。
    In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow\'s milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从巴西的巴西蓝绿色(Amazonettabrasiliensis)中对低致病性禽流感病毒(H6N2)的全基因组序列进行了测序,2023年。全基因组的系统发育分析揭示了2014年至2016年南美LPAIV的独特基因组,表明南美野生鸟类之间的广泛循环。
    The whole genome sequence of a low pathogenicity avian influenza virus (H6N2) was sequenced from a Brazilian teal (Amazonetta brasiliensis) in Brazil, 2023. Phylogenetic analysis of the whole genome revealed a distinct genome pertaining to South American LPAIV from 2014 to 2016, indicating extensive circulation among South American wild birds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文回顾了感染主要经济重要性的家养农场鸟类皮肤的禽类病毒:鸡,鸭子,土耳其,和鹅。许多禽类病毒(例如,痘病毒,疱疹病毒,流感病毒,逆转录病毒)导致病理感染这些鸟类的皮肤和附属物。其中一些病毒(例如,马立克病病毒,禽流感病毒)已经和/或仍然对家禽经济产生破坏性影响。这些病毒的皮肤嗜性是病理学和病毒生命周期的关键,特别是对于病毒进入,脱落,和/或传输。此外,对于一些新兴的虫媒病毒,如黄病毒,蚊虫叮咬后,皮肤往往是病毒的入口,宿主是否出现症状(例如,西尼罗河病毒)。各种鸟类皮肤模型,从原代细胞到三维模型,目前可以更好地了解病毒与皮肤的相互作用(如复制,发病机制,细胞反应,和共感染)。这些模型可能是找到预防或阻止家禽病毒感染的解决方案的关键。
    This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek\'s disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:随着近年来高致病性禽流感病毒传播的加剧,欧盟正在考虑对养殖鸟类进行疫苗接种。这种疫苗接种的先决条件是实施严格的监测方案。环境采样是动物采样的相关替代方法。然而,环境样品通常含有足够大量的抑制性化合物以抑制RT-qPCR反应。由于牛血清白蛋白是许多领域用来克服这种抑制作用的分子,我们在受HPAIV流行病严重影响的地区的家禽养殖场的灰尘样本中测试了其使用情况。我们的结果表明,它的使用显着提高了方法的灵敏度。
    OBJECTIVE: With the circulation of high pathogenicity avian influenza viruses having intensified considerably in recent years, the European Union is considering the vaccination of farmed birds. A prerequisite for this vaccination is the implementation of drastic surveillance protocols. Environmental sampling is a relevant alternative to animal sampling. However, environmental samples often contain inhibitory compounds in large enough quantities to inhibit RT-qPCR reactions. As bovine serum albumin is a molecule used in many fields to overcome this inhibitory effect, we tested its use on dust samples from poultry farms in areas heavily affected by HPAIV epizootics. Our results show that its use significantly increases the sensitivity of the method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目前在临床试验或批准的基因治疗生物制剂中使用的所有腺相关病毒(AAV)载体均基于人或非人灵长类AAV。AAV基因治疗的主要挑战是在靶向病毒衣壳的一般群体中循环中和抗体(NAb)的高度流行,导致载体失活和治疗功效的丧失。逃避NAb检测的策略是利用不在灵长类动物群体中传播并且表现出低或无抗原性的AAV。一个这样的例子是禽类AAV(AAAV),最早是在奥尔森鹌鹑支气管炎的制剂中发现的,一种禽腺病毒。AAV与AAV血清型,包括与结构多样的AAV4和AAV5的序列显示非常低的序列同一性(~54-58%)。在这项研究中,空的和基因组填充的AAAV衣壳的结构是通过低温电子显微镜(cryo-EM)以2.5和3.1的分辨率确定的。此外,发现AAAV利用半乳糖进行细胞附着,类似于AAV9和AAVrh.10。AAAV的抗原特性的表征揭示来自健康个体的30%的人血清能够中和转导。这种高抗原性率是由衣壳的五倍通道周围的保守表位引起的,从而允许NAb的交叉反应性。这通过使用cryo-EM对交叉反应性人抗AAV9单克隆抗体作图进一步证实。这种结构-功能表征将有利于进一步扩展AAV载体在人基因治疗应用中的当前库。重要性AAV作为有前途的治疗基因递送载体被广泛研究。为了规避针对基于灵长类动物的AAV衣壳的预先存在的抗体,将AAV衣壳评估为基于灵长类动物的治疗载体的替代方案。尽管序列多样性很高,发现AAV衣壳与常见的聚糖受体结合,末端半乳糖,这也被其他已经在基因治疗试验中使用的AAV所利用。然而,与最初的假设相反,AAAV被约30%的测试的人血清识别。结构和序列比较指出衣壳五倍区中的保守表位是观察到的交叉反应性的原因决定因素。
    AAVs are extensively studied as promising therapeutic gene delivery vectors. In order to circumvent pre-existing antibodies targeting primate-based AAV capsids, the AAAV capsid was evaluated as an alternative to primate-based therapeutic vectors. Despite the high sequence diversity, the AAAV capsid was found to bind to a common glycan receptor, terminal galactose, which is also utilized by other AAVs already being utilized in gene therapy trials. However, contrary to the initial hypothesis, AAAV was recognized by approximately 30% of human sera tested. Structural and sequence comparisons point to conserved epitopes in the fivefold region of the capsid as the reason determinant for the observed cross-reactivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于鸭子作为禽流感病毒(AIV)的天然储库的重要性,最近受到了研究界的广泛关注。尽管如此,缺乏有效确定鸭子免疫状态的工具。这项工作的目的是为野鸭(Anasplatyrhynchos)开发自动分类血细胞计数,为了评估该物种的白细胞(WBC)计数参考值,并将该方案应用于AIV现场研究。我们建立了基于流式细胞术的鸭WBC差异基于无裂解无洗单步单管技术,应用新产生的单克隆抗体与可用的鸭特异性以及交叉反应的鸡标记的组合。血细胞计数能够量化野鸭血小板,粒细胞,单核细胞,B细胞,CD4+T细胞(T辅助细胞)和CD8+细胞毒性T细胞。这项技术是可重复的,准确,比传统的血涂片评估要快得多。稳定血液样本可以在采样后1周内进行分析,从而允许评估在现场收集的血液样本。我们使用新技术来调查性别的可能影响,年龄,野生野鸭白细胞计数上的AIV感染状况。我们表明年龄对野鸭的白细胞计数有影响,幼年野鸭的性行为也是如此。有趣的是,自然感染低致病性AIV的男性显示淋巴细胞(淋巴细胞减少症)和血小板(血小板减少症)减少,这在人类甲型流感感染中都很常见。禽流感在家禽和人类中的爆发是全球公共卫生关注的问题。水生鸟类是禽流感病毒(AIV)的主要天然宿主,惊人的是,AIV主要在这些物种中引起无症状或轻度感染。因此,水鸟的免疫学研究对于研究不同宿主对AIV的疾病结果变化非常重要,可能有助于早期识别和更好地了解人畜共患事件。不幸的是,到目前为止,由于缺乏诊断工具,这些物种的免疫学研究受到了阻碍。这里,我们提出了一种能够对野鸭进行高通量白细胞(WBC)分析的技术,并报告了自然感染AIV的野鸭中WBC计数的变化.我们的方案允许在广泛的野生和驯化鸭物种中进行大规模的免疫状态监测,并提供了一种工具来进一步研究人畜共患病毒重要宿主中的免疫反应。
    Ducks have recently received a lot of attention from the research community due to their importance as natural reservoirs of avian influenza virus (AIV). Still, there is a lack of tools to efficiently determine the immune status of ducks. The purpose of this work was to develop an automated differential blood count for the mallard duck (Anas platyrhynchos), to assess reference values of white blood cell (WBC) counts in this species, and to apply the protocol in an AIV field study. We established a flow cytometry-based duck WBC differential based on a no-lyse no-wash single-step one-tube technique, applying a combination of newly generated monoclonal antibodies with available duck-specific as well as cross-reacting chicken markers. The blood cell count enables quantification of mallard thrombocytes, granulocytes, monocytes, B cells, CD4+ T cells (T helper) and CD8+ cytotoxic T cells. The technique is reproducible, accurate, and much faster than traditional evaluations of blood smears. Stabilization of blood samples enables analysis up to 1 week after sampling, thus allowing for evaluation of blood samples collected in the field. We used the new technique to investigate a possible influence of sex, age, and AIV infection status on WBC counts in wild mallards. We show that age has an effect on the WBC counts in mallards, as does sex in juvenile mallards. Interestingly, males naturally infected with low pathogenic AIV showed a reduction of lymphocytes (lymphocytopenia) and thrombocytes (thrombocytopenia), which are both common in influenza A infection in humans. IMPORTANCE Outbreaks of avian influenza in poultry and humans are a global public health concern. Aquatic birds are the primary natural reservoir of avian influenza viruses (AIVs), and strikingly, AIVs mainly cause asymptomatic or mild infection in these species. Hence, immunological studies in aquatic birds are important for investigating variation in disease outcome of different hosts to AIV and may aid in early recognition and a better understanding of zoonotic events. Unfortunately, immunological studies in these species were so far hampered by the lack of diagnostic tools. Here, we present a technique that enables high-throughput white blood cell (WBC) analysis in the mallard and report changes in WBC counts in wild mallards naturally infected with AIV. Our protocol permits large-scale immune status monitoring in a widespread wild and domesticated duck species and provides a tool to further investigate the immune response in an important reservoir host of zoonotic viruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    宿主限制限制了甲型流感病毒禽库中新型大流行毒株的出现。为了在哺乳动物细胞中有效复制,禽流感RNA依赖性RNA聚合酶必须适应使用宿主因子ANP32的人类直系同源物,相对于禽类ANP32A,该因子缺乏33个氨基酸的插入.这里,我们发现,流感聚合酶需要ANP32蛋白来支持基因组复制的两个步骤:cRNA和vRNA合成.然而,禽类菌株仅在人细胞中的vRNA合成方面受到限制。因此,禽流感聚合酶可以使用人类ANP32直系同源物支持cRNA合成,没有获得哺乳动物的适应。这意味着ANP32蛋白支持cRNA与vRNA合成的机制存在根本差异。重要性感染人类并引起大流行,禽流感必须首先适应使用病毒劫持的人类版本的蛋白质进行复制,而不是在鸟类细胞中发现的鸟类直系同源物。一种关键的宿主蛋白是ANP32。了解宿主蛋白如ANP32如何支持病毒活性的细节可能允许设计破坏这些相互作用的新的抗病毒策略。这里,我们使用缺乏ANP32的细胞明确证明了流感基因组复制的两个步骤都需要ANP32.出乎意料的是,然而,我们发现禽流感可以利用人类ANP32蛋白进行复制的第一步,复制互补链,不适应,但只能利用禽类ANP32进行产生新基因组的第二步复制。这表明ANP32在支持复制的第二步中可能具有独特的作用,当禽流感感染人类细胞时,这种活动被特别阻断。
    Host restriction limits the emergence of novel pandemic strains from the influenza A virus avian reservoir. For efficient replication in mammalian cells, the avian influenza RNA-dependent RNA polymerase must adapt to use human orthologues of the host factor ANP32, which lack a 33-amino-acid insertion relative to avian ANP32A. Here, we find that influenza polymerase requires ANP32 proteins to support both steps of genome replication: cRNA and vRNA synthesis. However, avian strains are only restricted in vRNA synthesis in human cells. Therefore, avian influenza polymerase can use human ANP32 orthologues to support cRNA synthesis, without acquiring mammalian adaptations. This implies a fundamental difference in the mechanism by which ANP32 proteins support cRNA versus vRNA synthesis. IMPORTANCE To infect humans and cause a pandemic, avian influenza must first adapt to use human versions of the proteins the virus hijacks for replication, instead of the avian orthologues found in bird cells. One critical host protein is ANP32. Understanding the details of how host proteins such as ANP32 support viral activity may allow the design of new antiviral strategies that disrupt these interactions. Here, we use cells that lack ANP32 to unambiguously demonstrate ANP32 is needed for both steps of influenza genome replication. Unexpectedly, however, we found that avian influenza can use human ANP32 proteins for the first step of replication, to copy a complementary strand, without adaptation but can only utilize avian ANP32 for the second step of replication that generates new genomes. This suggests ANP32 may have a distinct role in supporting the second step of replication, and it is this activity that is specifically blocked when avian influenza infects human cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    分子生物学的发展和理解各种生物分子和实体的结构和功能,从而为不同的生物技术构建各种复杂的工具,medical,和兽医应用。其中之一是噬菌体展示技术,基于产生带有融合基因的特定噬菌体的可能性,编码由噬菌体外壳蛋白和任何氨基酸序列的肽组成的融合蛋白。此类蛋白质保留其作为噬菌体病毒体的结构元件的生物学功能,同时在其表面上暴露外源肽序列。遗传操作允许构建由数十亿个暴露肽变体组成的噬菌体展示文库;此类文库可用于选择具有所需特征的肽。尽管噬菌体展示技术已广泛应用于生物技术和医学领域,它在兽医,特别是家禽科学中的应用明显较少。然而,在后一个领域也报道了许多有趣的发现,为噬菌体展示相关方法在开发新的诊断工具中的有效应用提供证据,新疫苗,以及致力于家禽的创新潜在疗法。尤其是,由禽类病毒引起的传染病,细菌,和单细胞真核寄生虫在这一领域进行了研究。本文对这些研究进行了总结和讨论,不同的噬菌体展示系统在开发有用和有效的产品中提供了各种可能性,以促进家禽传染病问题的管理。
    Development of molecular biology and understanding structures and functions of various biological molecules and entities allowed to construct various sophisticated tools for different biotechnological, medical, and veterinary applications. One of them is the phage display technology, based on the possibility to create specific bacteriophages bearing fusion genes, which code for fusion proteins consisting of a phage coat protein and a peptide of any amino acid sequence. Such proteins retain their biological functions as structural elements of phage virions while exposing foreign peptide sequences on their surfaces. Genetic manipulations allow to construct phage display libraries composed of billions of variants of exposed peptides; such libraries can be used to select peptides of desired features. Although the phage display technology has been widely used in biotechnology and medicine, its applications in veterinary and especially in poultry science were significantly less frequent. Nevertheless, many interesting discoveries have been reported also in the latter field, providing evidence for a possibility of effective applications of phage display-related methods in developing novel diagnostic tools, new vaccines, and innovative potential therapies dedicated to poultry. Especially, infectious diseases caused by avian viruses, bacteria, and unicellular eukaryotic parasites were investigated in this field. These studies are summarized and discussed in this review, with presentation of various possibilities provided by different phage display systems in development of useful and effective products facilitating management of the problem of infectious diseases of poultry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杯状病毒是ssRNA病毒,可以感染多种宿主,包括鸟类。虽然已经发现了几种禽杯状病毒,它们的分类法和宿主分布在很大程度上是未知的。我们在不列颠哥伦比亚省西南部的小号天鹅越冬中对一种新型的杯状病毒(小号天鹅杯状病毒:TruSCV)进行了分子鉴定,加拿大。阳性率为20.3%(14/69),男性(5/34,14.7%)和女性(9/35,25.7%)或考虑的年龄组(青少年:4/14,28.6%;亚成人:1/9,11.1%;成年人:9/46,19.6%)之间的感染率无显着差异。十二只受感染的天鹅死于铅中毒,一个是因为饥饿,还有一个身体受伤。TruSCV完整基因组具有杯状病毒的典型组织和蛋白质基序以及2型IRES,其最接近的亲戚是在澳大利亚鸭子中传播的病毒。系统发育分析表明存在34种不同但单一的禽杯状病毒。这些病毒,虽然具有保守的基因组组织和蛋白质基序,在几个不同的分支中拥有不同的IRES类型和群体,其中只有两个对应于当前定义的属,强调需要进行流行病学调查和系统分析,以更好地定义其分类法。需要后续研究来阐明多样性,分布,和TruSCV的致病潜力。
    Caliciviruses are ssRNA viruses that can infect a wide range of hosts, including birds. While several avian caliciviruses have been discovered, their taxonomy and host distribution are largely unknown. We molecularly characterized a novel calicivirus (trumpeter swan calicivirus: TruSCV) in trumpeter swans over-wintering in south-west British Columbia, Canada. The positivity rate was 20.3% (14/69) and there were no significant differences in infection rates between males (5/34, 14.7%) and females (9/35, 25.7%) or among considered age groups (juveniles: 4/14, 28.6%; sub-adults: 1/9, 11.1%; adults: 9/46, 19.6%). Twelve infected swans died of lead poisoning, one because of starvation, and one from physical injuries. TruSCV complete genome possessed the typical organization and protein motifs of caliciviruses and a type 2 IRES and its closest relative was a virus circulating in Australian ducks. Phylogenetic analyses showed the existence of 34 different but monophyletic avian caliciviruses. These viruses, while having conserved genomic organization and protein motifs, possess different IRES types and group in several divergent clades, with only two of them corresponding to currently defined genera, highlighting the need for epidemiological investigations and systematic analyses to better define their taxonomy. Follow-up studies are needed to elucidate the diversity, distribution, and pathogenic potential of TruSCV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲型流感病毒的非结构蛋白1(NS1)是控制宿主细胞免疫反应的重要毒力因子。在人类细胞中,NS1蛋白通过几种机制抑制I型干扰素的诱导,包括潜在的,通过防止泛素连接酶三联基序蛋白25(TRIM25)激活视黄酸诱导基因I(RIG-I)受体。目前尚不清楚抑制人TRIM25是所有甲型流感NS1蛋白的普遍功能还是毒株依赖性的。目前还不清楚NS1蛋白是否同样靶向野鸭的TRIM25,禽流感病毒的天然宿主,具有悠久的共同进化历史和独特的疾病动态。为了回答这些问题,我们使用共免疫沉淀和显微镜比较了五种不同的NS1蛋白与人和鸭TRIM25相互作用的能力,并评估了这对两种物种的RIG-I泛素化和信号传导的影响。我们表明,来自低致病性和高致病性禽流感病毒的NS1蛋白有效抑制RIG-I泛素化,并降低转染人细胞中干扰素启动子活性和干扰素β蛋白分泌,而小鼠适应的PR8品系的NS1则没有。然而,所有的NS1蛋白,当克隆到重组病毒中时,抑制感染的肺泡细胞中的干扰素。相比之下,禽类NS1蛋白不抑制鸭RIG-I泛素化和干扰素启动子活性,尽管与鸭子TRIM25互动。重要性甲型流感病毒是人类和动物疾病的主要原因。定期,来自野生水禽的禽流感病毒,比如鸭子,通过中间农业宿主,并作为高死亡率和流行潜力的人畜共患疾病出现在人群中。由于它们与甲型流感病毒的共同进化,与其他鸟类相比,鸭子对流感疾病具有独特的抵抗力,动物,和人类。这里,我们研究了甲型流感病毒干扰人类和鸭子直系同源的重要抗病毒信号通路的机制。我们表明,来自四种禽流感毒株的NS1蛋白可以阻断人RIG-I抗病毒受体的共激活和信号传导,而没有人阻断鸭RIG-I的共激活和信号传导。了解自然水库中的宿主-病原体动态将有助于我们对病毒性疾病机制的理解。病毒进化,以及驱动它的压力,这有利于全球监测和疫情预防。
    The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号