OPN, osteopontin

  • 文章类型: Journal Article
    作者确定了GLP-1受体激动剂利拉鲁肽对小鼠载脂蛋白E敲除动脉粥样硬化中血管细胞粘附分子(VCAM)-1内皮表面表达的影响。使用靶向VCAM-1的微泡和对照微泡的对比增强超声分子成像显示,在媒介物处理的动物中,内皮表面VCAM-1信号增加了3倍,而在利拉鲁肽治疗的动物中,信号比在整个研究过程中保持在1左右.利拉鲁肽对低密度脂蛋白胆固醇或糖化血红蛋白无影响,但降低了TNF-α,IL-1β,MCP-1和OPN。在利拉鲁肽治疗下,免疫组织学上的主动脉斑块病变面积和管腔VCAM-1表达减少。
    The authors determined the effect of the GLP-1 receptor agonist liraglutide on endothelial surface expression of vascular cell adhesion molecule (VCAM)-1 in murine apolipoprotein E knockout atherosclerosis. Contrast-enhanced ultrasound molecular imaging using microbubbles targeted to VCAM-1 and control microbubbles showed a 3-fold increase in endothelial surface VCAM-1 signal in vehicle-treated animals, whereas in the liraglutide-treated animals the signal ratio remained around 1 throughout the study. Liraglutide had no influence on low-density lipoprotein cholesterol or glycated hemoglobin, but reduced TNF-α, IL-1β, MCP-1, and OPN. Aortic plaque lesion area and luminal VCAM-1 expression on immunohistology were reduced under liraglutide treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    过度饮酒是一个全球性的医疗保健问题,具有巨大的社会,经济,和临床后果。虽然慢性,大量饮酒会导致身体几乎每个组织的结构损伤和/或破坏正常器官功能,肝脏受到的损害最大。这主要是因为肝脏是第一个通过门静脉循环从胃肠道吸收酒精的,因为肝脏是乙醇代谢的主要部位。酒精引起的损伤仍然是肝脏最普遍的疾病之一,也是肝脏疾病死亡或移植的主要原因。尽管对这种疾病的病理生理学进行了广泛的研究,目前还没有靶向治疗.鉴于酒精相关性肝病发病机制的多因素机制,可以想象,需要多种治疗方案来治疗该疾病谱中的不同阶段。
    Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经授权:先天性胫骨假关节(CPT)是一种罕见的先天性畸形和骨不愈合的特殊亚型。CPT来源的间充质干细胞(MSCs)成骨分化能力降低,miR-30a可抑制成骨分化。然而,miR-30a在CPT来源的MSCs中的作用尚不清楚.
    UNASSIGNED:通过茜素红S染色和碱性磷酸酶(ALP)活性测试了用miR-30a抑制剂处理的CPT来源的MSCs的成骨分化。通过Westernblot或定量逆转录聚合酶链反应(RT-qPCR)评估蛋白质和mRNA的表达水平。分别。miR-30a和HOXD8之间的相互作用通过双荧光素酶报告基因测定进行研究。进行染色质免疫沉淀(ChIP)以评估HOXD8和RUNX2启动子之间的结合关系。
    UNASSIGNED:CPT来源的MSCs显示出比正常MSCs更低的成骨分化能力。miR-30a在CPT来源的MSCs中增加,miR-30a下调可促进CPT来源MSCs的成骨分化。同时,HOXD8是miR-30a的直接靶标,HOXD8可以转录激活RUNX2。此外,miR-30a通过负调控HOXD8抑制CPT来源MSCs的成骨分化。
    未授权:miR-30a通过靶向HOXD8抑制CPT来源的MSCs的成骨分化。因此,这项研究可能为对抗CPT提供一种新的策略。
    UNASSIGNED: Congenital pseudarthrosis of the tibia (CPT) is an uncommon congenital deformity and a special subtype of bone nonunion. The lower ability of osteogenic differentiation in CPT-derived mesenchymal stem cells (MSCs) could result in progression of CPT, and miR-30a could inhibit osteogenic differentiation. However, the role of miR-30a in CPT-derived MSCs remains unclear.
    UNASSIGNED: The osteogenic differentiation of CPT-derived MSCs treated with the miR-30a inhibitor was tested by Alizarin Red S staining and alkaline phosphatase (ALP) activity. The expression levels of protein and mRNA were assessed by Western blot or quantitative reverse transcription-polymerase chain reaction (RT-qPCR), respectively. The interplay between miR-30a and HOXD8 was investigated by a dual-luciferase reporter assay. Chromatin immunoprecipitation (ChIP) was conducted to assess the binding relationship between HOXD8 and RUNX2 promoter.
    UNASSIGNED: CPT-derived MSCs showed a lower ability of osteogenic differentiation than normal MSCs. miR-30a increased in CPT-derived MSCs, and miR-30a downregulation promoted the osteogenic differentiation of CPT-derived MSCs. Meanwhile, HOXD8 is a direct target for miR-30a, and HOXD8 could transcriptionally activate RUNX2. In addition, miR-30a could inhibit the osteogenic differentiation of CPT-derived MSCs by negatively regulating HOXD8.
    UNASSIGNED: miR-30a inhibits the osteogenic differentiation of CPT-derived MSCs by targeting HOXD8. Thus, this study might supply a novel strategy against CPT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经授权:骨桥蛋白(OPN)在严重损伤后的作用尚待阐明,尤其是它与新分化的成牙本质细胞(OBLCs)分泌的I型胶原蛋白(由Col1a1基因编码)的关系。在这项研究中,我们研究了OPN在修复性牙本质形成过程中的作用,重点是Opn基因敲除(KO)和野生型(WT)小鼠牙齿再植后的神经支配和血运重建.
    未经授权:2周龄和3周龄的OpnKO和WT小鼠的上颌第一磨牙(OpnKO2W,OpnKO3W,WT2W,和WT3W组)重新种植,术后3-56天固定。在显微计算机断层扫描分析之后,脱钙的样品被处理用于Ki67,Nestin,PGP9.5和CD31以及Col1a1的原位杂交。
    未经批准:发生强烈的炎症反应,破坏了OpnKO3W组的再植牙齿的牙髓愈合,而OpnKO2W和WT组的牙髓达到愈合。与OpnKO2W和WT组相比,OpnKO3W组的三级牙本质面积明显减少,巢蛋白阳性的比例明显较低,术后7-14天新分化的OBLCs。在OpnKO3W组中,血管面积明显减少,牙髓愈合受到牙髓血运重建和神经支配失败的干扰。
    UNASSIGNED:OPN对于适当的神经支配和血运重建是必要的,以在牙根发育严重的萌出牙齿牙髓内严重损伤后沉积修复性牙本质。
    UNASSIGNED: The role of osteopontin (OPN) following severe injury remains to be elucidated, especially its relationship with type I collagen (encoded by the Col1a1 gene) secretion by newly-differentiated odontoblast-like cells (OBLCs). In this study, we examined the role of OPN in the process of reparative dentin formation with a focus on reinnervation and revascularization after tooth replantation in Opn knockout (KO) and wild-type (WT) mice.
    UNASSIGNED: Maxillary first molars of 2- and 3-week-old-Opn KO and WT mice (Opn KO 2W, Opn KO 3W, WT 2W, and WT 3W groups) were replanted, followed by fixation 3-56 days after operation. Following micro-computed tomography analysis, the decalcified samples were processed for immunohistochemistry for Ki67, Nestin, PGP 9.5, and CD31 and in situ hybridization for Col1a1.
    UNASSIGNED: An intense inflammatory reaction occurred to disrupt pulpal healing in the replanted teeth of the Opn KO 3W group, whereas dental pulp achieved healing in the Opn KO 2W and WT groups. The tertiary dentin in the Opn KO 3W group was significantly decreased in area compared with the Opn KO 2W and WT groups, with a significantly low percentage of Nestin-positive, newly-differentiated OBLCs during postoperative days 7-14. In the Opn KO 3W group, the blood vessels were significantly decreased in area and pulp healing was disturbed with a failure of pulpal revascularization and reinnervation.
    UNASSIGNED: OPN is necessary for proper reinnervation and revascularization to deposit reparative dentin following severe injury within the dental pulp of erupted teeth with advanced root development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED:骨质疏松症(OP)是一种全身性代谢性骨病,其特征是骨量减少和骨微结构破坏,这往往会导致骨脆性增强和相关的骨折。绝经后骨质疏松症(PMOP)占比较高,大量研究表明,雌激素缺乏与肠道微生物群(GM)失衡有关,肠粘膜屏障功能受损,炎症反应性增强。然而,潜在的机制仍不清楚,现有的干预措施也很少.
    未经批准:在这项研究中,我们建立了卵巢切除术(OVX)诱导的小鼠模型,并通过每天灌胃进行粪便微生物移植(FMT),持续8周。随后,通过显微计算机断层扫描(Micro-CT)评估小鼠的骨量和微结构。肠道通透性,促破骨细胞细胞因子表达,通过免疫组织学分析检测成骨和破骨细胞活性,组织学检查,相应的酶联免疫吸附测定(ELISA)和蛋白质印迹分析。此外,通过16SrRNA测序评估GM的组成和丰度,并通过代谢组学测定粪便短链脂肪酸(SCFAs)水平.
    UNASSIGNED:我们的结果表明FMT抑制了过度的破骨细胞生成并防止了OVX诱导的骨丢失。具体来说,与OVX组相比,FMT增强了紧密连接蛋白(闭合zonula蛋白1(ZO-1)和Occludin)的表达,并抑制了促破骨细胞细胞因子(肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β))的释放。此外,FMT还优化了GM的组成和丰度,并增加粪便SCFA水平(主要是乙酸和丙酸)。
    未经批准:集体,基于GM-骨轴,FMT通过纠正GM的失衡来预防OVX引起的骨丢失,提高SCFA水平,优化肠道通透性和抑制促破骨细胞细胞因子的释放,这可能是一个替代选择,作为一个有希望的候选人在未来的PMOP的预防和治疗。
    UNASSIGNED:这项研究表明GM-骨轴在PMOP中的巧妙参与以及FMT在重塑GM状态和改善OVX诱导的小鼠骨丢失中的作用。FMT可能成为未来PMOP预防和治疗的有希望的候选者。
    UNASSIGNED: Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce.
    UNASSIGNED: In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics.
    UNASSIGNED: Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid).
    UNASSIGNED: Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future.
    UNASSIGNED: This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于低级别胶质瘤(LGGs)的异质性,患者表现出各种无法通过组织学分类可靠预测的生存结局.肿瘤微环境(TME)有助于脑LGG的启动和进展。基于TME中的免疫和基质成分鉴定潜在的预后标志物将为LGG中TME的这两种成分的动态调节提供新的见解。我们应用ESTIMATE来计算来自癌症基因组图谱数据库的免疫和基质成分的比率。结合差异基因表达分析后,蛋白质相互作用网络的构建和生存分析,CD44被筛选为独立的预后因子,随后利用中国胶质瘤基因组图谱数据库的数据进行验证。为了破译TME和肿瘤进展中胶质瘤细胞CD44表达与基质细胞的关系,RT-qPCR,细胞活力和伤口愈合试验用于确定星形胶质细胞是否通过上调CD44表达来增强神经胶质瘤细胞活力和迁移。令人惊讶的是,通过CIBERSORT分析,M1巨噬细胞与CD44表达呈正相关。在单细胞测序数据的基础上,进一步提示CD44+神经胶质瘤细胞通过骨桥蛋白信号传导与小胶质细胞衍生的巨噬细胞(M1表型)相互作用。总的来说,我们发现星形胶质细胞可以提高胶质瘤细胞的CD44表达水平,增强M1巨噬细胞的募集,这可能通过骨桥蛋白-CD44信号传导促进神经胶质瘤的干性。因此,胶质瘤CD44的表达可能与TME中的胶质细胞活性协调,并可作为LGGs的潜在治疗靶标和预后标志物。
    Because of the heterogeneity of lower-grade gliomas (LGGs), patients show various survival outcomes that are not reliably predicted by histological classification. The tumour microenvironment (TME) contributes to the initiation and progression of brain LGGs. Identifying potential prognostic markers based on the immune and stromal components in the TME will provide new insights into the dynamic modulation of these two components of the TME in LGGs. We applied ESTIMATE to calculate the ratio of immune and stromal components from The Cancer Genome Atlas database. After combined differential gene expression analysis, protein-protein interaction network construction and survival analysis, CD44 was screened as an independent prognostic factor and subsequently validated utilizing data from the Chinese Glioma Genome Atlas database. To decipher the association of glioma cell CD44 expression with stromal cells in the TME and tumour progression, RT-qPCR, cell viability and wound healing assays were employed to determine whether astrocytes enhance glioma cell viability and migration by upregulating CD44 expression. Surprisingly, M1 macrophages were identified as positively correlated with CD44 expression by CIBERSORT analysis. CD44+ glioma cells were further suggested to interact with microglia-derived macrophages (M1 phenotype) via osteopontin signalling on the basis of single-cell sequencing data. Overall, we found that astrocytes could elevate the CD44 expression level of glioma cells, enhancing the recruitment of M1 macrophages that may promote glioma stemness via osteopontin-CD44 signalling. Thus, glioma CD44 expression might coordinate with glial activities in the TME and serve as a potential therapeutic target and prognostic marker for LGGs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经批准:阿米替林是一种三环类抗抑郁药,用于治疗抑郁症。它记录了对不同组织的许多副作用。
    UNASSIGNED:从组织学和影像学上研究口服阿米替林对白化病大鼠牙周组织的反应。
    UNASSIGNED:将14只成年雄性白化病大鼠(150-200g)分为两组,控制和实验。实验组的大鼠通过口服管饲法接受10mg/kg/天的盐酸阿米替林,为期四周。准备下颌骨用于苏木精和伊红(H&E)和抗骨桥蛋白(抗OPN)免疫组织化学染色。在下颌牙槽骨中测量骨矿物质密度。使用独立样本t检验进行抗OPN和相对Hounsfield单位值(HU值)的统计分析。
    未经证实:实验组牙龈表现为上皮变性,伴有固缩核和固有层崩解。可见牙槽骨的分离区域和牙骨质某些区域的变性,牙周膜(PDL)厚度明显增加,并且在某些区域与骨和牙骨质脱离。实验组的免疫组织化学检查显示牙龈中的免疫阳性明显增加。牙骨质细胞,骨细胞,牙骨质,骨基质,与对照组相比,成纤维细胞和PDL纤维。统计分析显示,两组之间牙龈中的抗OPN面积百分比差异无统计学意义。与对照组相比,实验组其他牙周组织中的抗OPN面积%有统计学上的显着增加,而相对HU值却有统计学上的显着降低。
    UNASSIGNED:阿米替林对牙周组织具有破坏性作用,并在统计学上增加除牙龈外的所有牙周组织中Anti-OPN的表达,并降低骨矿物质密度。
    UNASSIGNED: Amitriptyline is a tricyclic antidepressant drug accustomed to treat depressive disorders. It recorded many side effects on different tissues.
    UNASSIGNED: To investigate reaction of Albino rats\' periodontium after oral administration of Amitriptyline histologically and radiographically.
    UNASSIGNED: Fourteen adult male albino rats (150-200 g) were divided into two groups, control and experimental. Rats of experimental group received 10 mg⁄kg⁄day of Amitriptyline hydrochloride by oral gavage for four weeks. Mandibles were prepared for hematoxylin and eosin (H&E) and anti-osteopontin (Anti-OPN) immunohistochemistry staining. Bone mineral density was measured in mandibular alveolar bone. Statistical analysis for Anti-OPN and relative Hounsfield unit value (HU value) was performed using independent-samples t-test.
    UNASSIGNED: Gingiva of experimental group showed epithelial degeneration with pyknotic nuclei and disintegration in lamina propria. Areas of separation in alveolar bone and degeneration of some regions in cementum were seen with apparent increase in periodontal ligament (PDL) thickness and its detachment from bone and cementum at some regions. Immunohistochemical examination of experimental group showed apparently increased immunopositivity in gingiva, cementocytes, osteocytes, cementum, bone matrices, fibroblasts and PDL fibers when compared to control group. Statistical analysis revealed insignificant difference of Anti-OPN area% in gingiva between both studied groups. While there was statistical significant increase of Anti-OPN area% in the other periodontium tissues and high statistical significant decrease of relative HU value in experimental group when compared to control.
    UNASSIGNED: Amitriptyline has destructive effect on periodontal tissues and statistically increases the expression of Anti-OPN in all periodontal tissues except gingiva and decreases bone mineral density.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨稳态失衡是骨质疏松的根本原因。然而,目前的治疗方法主要集中在合成代谢或分解代谢途径,通常无法扭转不平衡的骨骼代谢。在本文中,我们报道了SIRT-1激动剂介导的分子治疗策略,通过从矿物质包被的无细胞基质微粒局部持续释放SRT2104同时调节成骨和破骨细胞生成来逆转骨稳态失衡。利用其静电相互作用将SRT2104固定在矿物涂层(MAM/SRT)上,导致SIRT-1激动剂持续释放30天以上。MAM/SRT不只加强成骨分化和矿化,而且还通过整合多个重要的上游信号(β-catenin,FoxOs,Runx2、NFATc1等。)在体外。骨质疏松动物模型还验证了其加速骨质疏松性骨愈合并改善周围骨的骨整合。总的来说,我们的工作提出了一个有前景的策略,通过使用指定的小分子药物递送系统逆转骨稳态失衡来治疗骨质疏松性骨缺损。
    The imbalance of bone homeostasis is the root cause of osteoporosis. However current therapeutic approaches mainly focus on either anabolic or catabolic pathways, which often fail to turn the imbalanced bone metabolism around. Herein we reported that a SIRT-1 agonist mediated molecular therapeutic strategy to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis via locally sustained release of SRT2104 from mineral coated acellular matrix microparticles. Immobilization of SRT2104 on mineral coating (MAM/SRT) harnessing their electrostatic interactions resulted in sustained release of SIRT-1 agonist for over 30 days. MAM/SRT not only enhanced osteogenic differentiation and mineralization, but also attenuated the formation and function of excessive osteoclasts via integrating multiple vital upstream signals (β-catenin, FoxOs, Runx2, NFATc1, etc.) in vitro. Osteoporosis animal model also validated that it accelerated osteoporotic bone healing and improved osseointegration of the surrounding bone. Overall, our work proposes a promising strategy to treat osteoporotic bone defects by reversing the imbalance in bone homeostasis using designated small molecule drug delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肝细胞癌(HCC)是由肝脏引起的主要原发性癌症,是全球癌症相关死亡率的主要原因之一。HCC的细胞起源一直是一个非常感兴趣的话题,由于关于它是否起源于肝细胞的矛盾发现,胆管细胞,或兼性干细胞。这些细胞类型在肝损伤期间都会发生变化,关于它们对肝脏再生反应的贡献存在争议。大多数HCC出现在病毒性肝炎慢性肝损伤的背景下,脂肪肝,酒精,和环境暴露。损伤的标志是肝实质的变化,如肝细胞再生结节,胆管细胞变化,导致纤维化和肝硬化的肌成纤维细胞的扩张,和炎症细胞浸润,所有这些都可能导致癌症的发生。解决HCC的细胞起源是确定触发它的最早事件的关键。在这里,我们回顾了有关再生肝脏和HCC中起源细胞的数据,以及这些发现对预防和治疗的意义。我们还回顾了儿童肝癌和其他罕见肝癌的起源。
    Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNASSIGNED: The development of novel and efficient biomarkers for primary bone cancers is of grave importance.
    UNASSIGNED: The expression pattern of osteopontin (OPN) was investigated in the 153 patients with benign (n = 72) and malignant (n = 81) primary bone cancers. Both local and circulating OPN mRNA expression levels and their protein concentration in serum and tumor site were assessed using real-time qRT-PCR, ELISA, and immunohistochemistry techniques, respectively. As a control, 29 healthy individuals were considered. The number of 153 tumor tissue specimens and the 153 paired margins were taken on surgical resection from the patients. 153 blood samples were also drained from all participants, then peripheral blood mononuclear cells (PBMC) and sera were separated.
    UNASSIGNED: The mean mRNA expression was significantly higher in all of the cancerous tissues than the paired margins and the PBMC of the patients than the controls. Consistently, the protein concentrations of OPN in serum and tumor tissues were significantly higher in the patients. Furthermore, the malignant cases had significantly elevated the mRNA levels and the protein compared to the benign cases. OPN could potentially differentiate the patients from the controls with 100% sensitivity and specificity in serum. Moreover, OPN could predict some of the malignant cases\' clinicopathological features, including metastasis, recurrence, grade, and response to chemotherapy.
    UNASSIGNED: In conclusion, OPN might be involved in the pathogenesis of primary bone tumors and can be considered as a potential biomarker to bone cancer diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号