EF-Tu

EF - Tu
  • 文章类型: Journal Article
    靶向翻译因子蛋白有望开发创新的抗结核药物。在蛋白质翻译过程中,许多因素导致核糖体在信使RNA(mRNA)处停滞。为了维持蛋白质的稳态,细菌已经进化出各种核糖体拯救机制,包括主要的翻译过程,释放停滞的核糖体并去除异常的mRNA。拯救系统需要翻译延伸因子蛋白(EF)的参与,并且对于细菌生理和繁殖至关重要。然而,它们在真核进化过程中消失,这使得必需蛋白和翻译延伸因子有望成为抗菌药物的靶点。这里,我们综述了翻译延伸因子EF-Tu的结构和分子机制,EF-Ts,和EF-G,在结核分枝杆菌(Mtb)的正常翻译和核糖体拯救机制中起着至关重要的作用。我们还简要描述了基于结构的,计算机辅助抗结核药物研究。
    Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    滑膜支原体(MS)是世界范围内流行的主要禽类病原体,可引起鸟类的呼吸道炎和滑膜炎。建议将疫苗接种作为控制MS感染的最具成本效益的策略。需要新的替代疫苗来根除和控制鸡群中的MS感染。DnaK,烯醇化酶,延伸率Tu(EF-Tu),MSPB,NADH氧化酶和LP78是MS的主要免疫原性抗原,并且是亚单位疫苗候选物的有希望的靶标。在本研究中,编码DnaK的基因,烯醇化酶,EF-Tu,MSPB,克隆了LP78和NADH氧化酶并在大肠杆菌中表达。酶联免疫吸附试验表明,6种重组蛋白均被恢复期血清识别,表明它们在感染期间表达。6个亚单位疫苗的两次注射诱导了强烈的抗体应答并增加了IFN-γ和IL-4的浓度,尤其是rEnolase和rEF-Tu。所有免疫组的外周血淋巴细胞增殖均增强。用rEnolase免疫的鸡,rEF-Tu,rLP78和rMSPB对MS感染具有重要的保护作用,气管中的DNA拷贝明显较低,气囊病变评分较低,气管粘膜厚度小于攻击对照。尤其是,rEnolase提供了最好的保护功效,其次是rEF-Tu,rMSPB,rLP78我们的发现表明,亚单位疫苗和菌苗只能减少MS感染引起的病变,但不能阻止生物体的定殖。我们的发现可能有助于开发针对MS感染的新型疫苗制剂。
    Mycoplasma synoviae (MS) is a primary avian pathogen prevalent worldwide that causes airsacculitis and synovitis in birds. Vaccination is recommended as the most cost-effective strategy in the control of MS infection. Novel alternative vaccines are needed for eradicating and controlling MS infection in flocks. DnaK, enolase, elongation factor Tu (EF-Tu), MSPB, NADH oxidase and LP78 are the major immunogenic antigens of MS and are promising targets for subunit vaccine candidates. In the present study, genes encoding DnaK, enolase, EF-Tu, MSPB, LP78, and NADH oxidase were cloned and expressed in Escherichia coli. Enzyme-linked immunosorbent assay showed that the six recombinant proteins were recognized by convalescent sera, indicating that they were expressed during infection. Two injections of the six subunit vaccines induced a robust antibody response and increased the concentrations of IFN-γ and IL-4, especially rEnolase and rEF-Tu. The proliferation of peripheral blood lymphocytes was enhanced in all of the immunized groups. Chickens immunized with rEnolase, rEF-Tu, rLP78, and rMSPB conferred significant protection against MS infection, as indicated by significantly lower DNA copies in the trachea, lower scores of air sac lesions, and lesser tracheal mucosal thickness than that in the challenge control. Especially, rEnolase provided the best protective efficacy, followed by rEF-Tu, rMSPB, and rLP78. Our finds demonstrate that the subunit vaccines and bacterin can only reduce the lesions caused by MS infection, but not prevent colonization of the organism. Our findings may contribute to the development of novel vaccine agents against MS infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    跨翻译在整个细菌中是保守的,并且在许多物种中是必不可少的。高通量筛选确定了一种基于四唑的反式翻译抑制剂,KKL-55,具有广谱抗生素活性。KKL-55的生物素化版本从细菌裂解物中拉下热不稳定的延伸因子(EF-Tu)。体外纯化的EF-Tu结合KKL-55,Kd=2µM,确认高亲和力相互作用。X射线晶体结构显示KKL-55结合在EF-Tu的结构域3中,结合袋中残基的突变消除了KKL-55的结合。体外RNA结合测定显示KKL-55抑制EF-Tu和转移信使RNA(tmRNA)之间的结合,但不抑制EF-Tu和tRNA之间的结合。这些数据证明了抑制EF-Tu功能的新机制,并且表明EF-Tu·tmRNA结合的这种特异性抑制是抗生素开发的可行靶标。重要性延伸因子热不稳定(EF-Tu)是一种普遍保守的翻译因子,可介导tRNA和核糖体之间的生产性相互作用。在细菌中,EF-Tu还在转译期间将转移信使RNA(tmRNA)-SmpB递送至核糖体。我们报道了第一个小分子,KKL-55,其特异性抑制反式翻译中的EF-Tu活性而不影响其在正常翻译中的活性。KKL-55具有广谱抗生素活性,这表明靶向EF-Tu的tmRNA结合界面的化合物可以发展成为治疗耐药感染的新型抗生素。
    OBJECTIVE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    平移延伸率EF-Tu,将氨基酰基tRNA传递到核糖体,容易被蓝细菌中的活性氧(ROS)灭活。PCC6803。然而,植物叶绿体定位的EF-Tu(cpEF-Tu)对ROS的敏感性尚待阐明。在本研究中,我们产生了拟南芥的重组cpEF-Tu蛋白,并在体外检查了其对ROS的敏感性。在缺乏结合核苷酸的cpEF-Tu中,两个半胱氨酸残基之一,Cys149和Cys451,在成熟卵白中对H2O2氧化敏感,并由此生成次磺酸。cpEF-Tu的翻译活性,根据体外翻译系统的确定,来自大肠杆菌,没有EF-Tu的重组,随着半胱氨酸残基的氧化而降低。用丙氨酸残基替换Cys149使cpEF-Tu对H2O2的失活不敏感,表明Cys149可能是氧化的目标。相比之下,与不含核苷酸的cpEF-Tu相比,已结合GDP或GTP的cpEF-Tu对H2O2的氧化敏感性较低。添加拟南芥叶绿体中主要的硫氧还蛋白f1,氧化的cpEF-Tu允许Cys149的还原和cpEF-Tu的重新激活,表明cpEF-Tu的氧化可能是一种可逆的调节机制,以氧化还原依赖的方式抑制叶绿体翻译系统。
    Translational elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803. However, the sensitivity to ROS of chloroplast-localized EF-Tu (cpEF-Tu) of plants remains to be elucidated. In the present study, we generated a recombinant cpEF-Tu protein of Arabidopsis thaliana and examined its sensitivity to ROS in vitro. In cpEF-Tu that lacked a bound nucleotide, one of the two cysteine residues, Cys149 and Cys451, in the mature protein was sensitive to oxidation by H2O2, with the resultant formation of sulfenic acid. The translational activity of cpEF-Tu, as determined with an in vitro translation system, derived from Escherichia coli, that had been reconstituted without EF-Tu, decreased with the oxidation of a cysteine residue. Replacement of Cys149 with an alanine residue rendered cpEF-Tu insensitive to inactivation by H2O2, indicating that Cys149 might be the target of oxidation. In contrast, cpEF-Tu that had bound either GDP or GTP was less sensitive to oxidation by H2O2 than nucleotide-free cpEF-Tu. The addition of thioredoxin f1, a major thioredoxin in the Arabidopsis chloroplast, to oxidized cpEF-Tu allowed the reduction of Cys149 and the reactivation of cpEF-Tu, suggesting that the oxidation of cpEF-Tu might be a reversible regulatory mechanism that suppresses the chloroplast translation system in a redox-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    带负电荷侧链的d-α-氨基酸(dAA)和N-甲基-1-α-氨基酸(MeAA)的核糖体掺入,比如d-Asp,d-Glu,MeAsp和MeGlu,与带有中性或带正电荷的肽相比,新生肽的效率要低得多。这是因为它们的氨酰基转移RNA(tRNA)与延伸因子热不稳定(EF-Tu)的结合亲和力低,一种翻译因子,负责将氨酰基tRNA调节到核糖体上。众所周知,EF-Tu与氨酰基-tRNA的两个部分结合,氨基酸部分和T-茎;然而,带有Glu和Asp的EF-Tu的氨基酸结合袋引起对tRNA上带负电荷的氨基酸的电排斥。为了避免这个问题,在这里,我们采用了两种策略:(I)使用EF-Tu变体,叫做EF-Sep,其中EF-Tu中的Glu216和Asp217残基分别被Asn216和Gly217取代;和(ii)使用人工开发的嵌合tRNA增强T-茎亲和力,tRNAPro1E2,其T-茎来自大肠杆菌tRNAGlu,对EF-Tu具有高亲和力。因此,我们可以成功地提高d-Asp的掺入效率,d-Glu,MeAsp和MeGlu第一次演示,根据我们的知识,含有多个d-Asp或MeAsp的大环肽的核糖体合成。本文是“化学和合成生物学中的反应性和机理”主题问题的一部分。
    Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue \'Reactivity and mechanism in chemical and synthetic biology\'.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hsp33, a prokaryotic redox-regulated holding chaperone, has been recently identified to be able to exhibit an unfoldase and aggregase activity against elongation factor Tu (EF-Tu) in its reduced state. In this study, we investigated the effect of elongation factor Ts (EF-Ts) and trigger factor (TF) on Hsp33-mediated EF-Tu unfolding and aggregation using gel filtration, light scattering, circular dichroism, and isothermal titration calorimetry. We found that EF-Tu unfolding and subsequent aggregation induced by Hsp33 were evident even in its complex state with EF-Ts, which enhanced EF-Tu stability. In addition, although TF alone had no substantial effect on the stability of EF-Tu, it markedly amplified the Hsp33-mediated EF-Tu unfolding and aggregation. Collectively, the present results constitute the first example of synergistic unfoldase/aggregase activity of molecular chaperones and suggest that the stability of EF-Tu is modulated by a sophisticated network of molecular chaperones to regulate protein biosynthesis in cells under stress conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    It has been hypothesized that early enzymes are more promiscuous than their extant orthologs. Whether or not this hypothesis applies to the translation machinery, the oldest molecular machine of life, is not known. Efficient protein synthesis relies on a cascade of specific interactions between the ribosome and the translation factors. Here, using elongation factor-Tu (EF-Tu) as a model system, we have explored the evolution of ribosome specificity in translation factors. Employing presteady state fast kinetics using quench flow, we have quantitatively characterized the specificity of two sequence-reconstructed 1.3- to 3.3-Gy-old ancestral EF-Tus toward two unrelated bacterial ribosomes, mesophilic Escherichia coli and thermophilic Thermus thermophilus. Although the modern EF-Tus show clear preference for their respective ribosomes, the ancestral EF-Tus show similar specificity for diverse ribosomes. In addition, despite increase in the catalytic activity with temperature, the ribosome specificity of the thermophilic EF-Tus remains virtually unchanged. Our kinetic analysis thus suggests that EF-Tu proteins likely evolved from the catalytically promiscuous, \"generalist\" ancestors. Furthermore, compatibility of diverse ribosomes with the modern and ancestral EF-Tus suggests that the ribosomal core probably evolved before the diversification of the EF-Tus. This study thus provides important insights regarding the evolution of modern translation machinery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The opportunistic bacterial pathogen Pseudomonas aeruginosa is a leading cause of serious infections in individuals with cystic fibrosis, compromised immune systems, or severe burns. P. aeruginosa adhesion to host epithelial cells is enhanced by surface-exposed translation elongation factor EF-Tu carrying a Lys-5 trimethylation, incorporated by the methyltransferase EftM. Thus, the EF-Tu modification by EftM may represent a target to prevent P. aeruginosa infections in vulnerable individuals. Here, we extend our understanding of EftM activity by defining the molecular mechanism by which it recognizes EF-Tu. Acting on the observation that EftM can bind to EF-Tu lacking its N-terminal peptide (encompassing the Lys-5 target site), we generated an EftM homology model and used it in protein/protein docking studies to predict EftM/EF-Tu interactions. Using site-directed mutagenesis of residues in both proteins, coupled with binding and methyltransferase activity assays, we experimentally validated the predicted protein/protein interface. We also show that EftM cannot methylate the isolated N-terminal EF-Tu peptide and that binding-induced conformational changes in EftM are likely needed to enable placement of the first 5-6 amino acids of EF-Tu into a conserved peptide-binding channel in EftM. In this channel, a group of residues that are highly conserved in EftM proteins position the N-terminal sequence to facilitate Lys-5 modification. Our findings reveal that EftM employs molecular strategies for substrate recognition common among both class I (Rossmann fold) and class II (SET domain) methyltransferases and pave the way for studies seeking a deeper understanding of EftM\'s mechanism of action on EF-Tu.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号