{Reference Type}: Journal Article {Title}: Molecular Effects of Elongation Factor Ts and Trigger Factor on the Unfolding and Aggregation of Elongation Factor Tu Induced by the Prokaryotic Molecular Chaperone Hsp33. {Author}: Keum M;Ito D;Kim MS;Lin Y;Yoon KH;Kim J;Lee SH;Kim JH;Yu W;Lee YH;Won HS; {Journal}: Biology (Basel) {Volume}: 10 {Issue}: 11 {Year}: Nov 2021 12 {Factor}: 5.168 {DOI}: 10.3390/biology10111171 {Abstract}: Hsp33, a prokaryotic redox-regulated holding chaperone, has been recently identified to be able to exhibit an unfoldase and aggregase activity against elongation factor Tu (EF-Tu) in its reduced state. In this study, we investigated the effect of elongation factor Ts (EF-Ts) and trigger factor (TF) on Hsp33-mediated EF-Tu unfolding and aggregation using gel filtration, light scattering, circular dichroism, and isothermal titration calorimetry. We found that EF-Tu unfolding and subsequent aggregation induced by Hsp33 were evident even in its complex state with EF-Ts, which enhanced EF-Tu stability. In addition, although TF alone had no substantial effect on the stability of EF-Tu, it markedly amplified the Hsp33-mediated EF-Tu unfolding and aggregation. Collectively, the present results constitute the first example of synergistic unfoldase/aggregase activity of molecular chaperones and suggest that the stability of EF-Tu is modulated by a sophisticated network of molecular chaperones to regulate protein biosynthesis in cells under stress conditions.