polymerase

聚合酶
  • 文章类型: Journal Article
    裂谷热(RVF)病毒在世界范围内普遍存在,对人类生命和财产构成严重威胁。RVF病毒聚合酶在病毒的复制和转录中起着至关重要的作用。这里,我们描述了如何表达和纯化这种聚合酶,并对其体外活性测定进行测试。
    Rift Valley fever (RVF) virus is widespread worldwide and poses a severe threat to human life and property. RVF viral polymerase plays a vital role in the replication and transcription of the virus. Here, we describe how to express and purify this polymerase and perform tests for its in vitro activity assays.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Research Support, Non-U.S. Gov\'t
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    野生鸟类和鸭子中维持着各种各样的禽流感病毒(AIV)种群,但AIV在这些环境水库中的人畜共患潜力以及哺乳动物感染中涉及的宿主-病毒相互作用尚未得到很好的了解。在北美监测期间从候鸟中分离出的一组亚型H1N1AIV的研究中,我们先前在聚合酶基因PB2和PB1中鉴定了8个氨基酸,这8个氨基酸对于这些AIV在人类流感病毒传播的雪貂模型中的传播性具有重要意义.在这项当前的研究中,我们发现含有与67、152、199、508和649的可传播性相关的氨基酸PB2和298、642和667的PB1与更快速的病毒复制动力学相关。更大的传染性,更活跃的聚合酶复合物和病毒基因组复制和转录的更大动力学。小鼠模型的致病性也受到影响,明显的体重减轻和肺部病理与更大的炎性肺细胞因子表达相关。Further,这些AIV均含有PB2-E627,D701,G590,Q591和T271的禽类氨基酸.因此,我们的研究为AIV聚合酶复合物在哺乳动物人畜共患病传播中的作用提供了新的见解。
    A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G-四链体(G4)是一种四链非规范DNA结构,长期以来一直被认为是DNA复制的潜在障碍。然而,复制体如何有效地处理G4s以避免复制失败仍然不清楚。这里,使用单分子和集成方法,检查噬菌体T7复制体与位于前导链或滞后链上的分子内G4之间碰撞的结果。发现G4形成诱导的相邻叉连接引起T7DNA聚合酶(DNAP)的结合。除G4外,这些不活跃的DNAP还存在不可逾越的障碍,阻碍DNA合成的进展。然而,T7解旋酶可以拆除它们并解决滞后链G4s,为复制叉的发展铺平了道路。此外,在单链DNA结合蛋白(SSB)gp2.5的帮助下,T7解旋酶也能够在未折叠状态下维持前导链G4结构,允许一小部分T7DNAP通过合成而不会崩溃。这些发现拓宽了复制解旋酶的功能库,并强调了复制体固有的G4耐受性。
    G-quadruplex (G4) is a four-stranded noncanonical DNA structure that has long been recognized as a potential hindrance to DNA replication. However, how replisomes effectively deal with G4s to avoid replication failure is still obscure. Here, using single-molecule and ensemble approaches, the consequence of the collision between bacteriophage T7 replisome and an intramolecular G4 located on either the leading or lagging strand is examined. It is found that the adjacent fork junctions induced by G4 formation incur the binding of T7 DNA polymerase (DNAP). In addition to G4, these inactive DNAPs present insuperable obstacles, impeding the progression of DNA synthesis. Nevertheless, T7 helicase can dismantle them and resolve lagging-strand G4s, paving the way for the advancement of the replication fork. Moreover, with the assistance of the single-stranded DNA binding protein (SSB) gp2.5, T7 helicase is also capable of maintaining a leading-strand G4 structure in an unfolded state, allowing for a fraction of T7 DNAPs to synthesize through without collapse. These findings broaden the functional repertoire of a replicative helicase and underscore the inherent G4 tolerance of a replisome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA聚合酶催化的DNA合成对于所有生命形式都是必不可少的,与磷中心反转形成磷酸二酯键是该过程中的关键步骤。在这里,通过使用单硒原子修饰的dNTP探针,我们报告了一种可视化反应立体化学和催化的新策略。我们捕获了反应前后的状态,并提供了DNA聚合的中心倒置和内线攻击SN2机制的明确证据,同时求解非对映异构体的绝对构型。Further,我们的动力学和热力学研究表明,在存在Mg2+离子(或Mn2+)的情况下,dGTPαSe-Rp的结合亲和力(Km)和反应选择性(kcat/Km)比dGTPαSe-Sp强51.1倍(或19.5倍),高21.8倍(或11.3倍),分别,表明非对映异构体Se-Sp原子对结合和催化作用具有相当大的破坏性。我们的发现表明,在底物识别和键形成方面,第三种金属离子比其他两种金属离子更关键。提供如何更好地设计聚合酶抑制剂和发现治疗方法的见解。
    DNA synthesis catalyzed by DNA polymerase is essential for all life forms, and phosphodiester bond formation with phosphorus center inversion is a key step in this process. Herein, by using a single-selenium-atom-modified dNTP probe, we report a novel strategy to visualize the reaction stereochemistry and catalysis. We capture the before- and after-reaction states and provide explicit evidence of the center inversion and in-line attacking SN2 mechanism of DNA polymerization, while solving the diastereomer absolute configurations. Further, our kinetic and thermodynamic studies demonstrate that in the presence of Mg2+ ions (or Mn2+), the binding affinity (Km) and reaction selectivity (kcat/Km) of dGTPαSe-Rp were 51.1-fold (or 19.5-fold) stronger and 21.8-fold (or 11.3-fold) higher than those of dGTPαSe-Sp, respectively, indicating that the diastereomeric Se-Sp atom was quite disruptive of the binding and catalysis. Our findings reveal that the third metal ion is much more critical than the other two metal ions in both substrate recognition and bond formation, providing insights into how to better design the polymerase inhibitors and discover the therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    逆转录酶(RT)通过其相关的聚合酶和核糖核酸酶H(RNaseH)活性在人类免疫缺陷病毒(HIV)的复制中起着不可或缺的作用。由于HIV是一种高度诱变的病毒,并且容易对单靶标RT抑制剂产生抗性,已经开发了针对HIVRT相关聚合酶和RNaseH的双重抑制剂。这些双重抑制剂具有增加疗效的优点,减少耐药性,药物-药物相互作用,和细胞毒性,以及提高患者的依从性。在这次审查中,我们总结了聚合酶/RNaseH双重抑制剂的最新进展,重点是药物设计策略,和结构-活性关系,并分享开发抗HIV药物的新见解。
    Reverse transcriptase (RT) plays an indispensable role in the replication of human immunodeficiency virus (HIV) through its associated polymerase and ribonuclease H (RNase H) activities during the viral RNA genome transformation into proviral DNA. Due to the fact that HIV is a highly mutagenic virus and easily resistant to single-target RT inhibitors, dual inhibitors targeting HIV RT associated polymerase and RNase H have been developed. These dual inhibitors have the advantages of increasing efficacy, reducing drug resistance, drug-drug interactions, and cytotoxicity, as well as improving patient compliance. In this review, we summarize recent advances in polymerase/RNase H dual inhibitors focusing on drug design strategies, and structure-activity relationships and share new insights into developing anti-HIV drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近在中国和南美进行了大量研究,代表四个属的四个独立进化枝已经被系统发育识别。在这项研究中,更多样品,主要来自亚热带和热带亚洲,大洋洲,东非,被分析。基于4个基因的序列数据集(ITSnLSUmtSSUtef)的系统发育已证实在巨大的细菌中存在四个属:Jorgewright,Mariorajchenbergia,Megasporia,和特加索波罗尼亚。六个新物种,JorgewrightAustroasiana,Jorgewrigtia非路人,JorgewrightTenuis,Mariorajchenbergiasubleuplaca,食草大虫,和巨大孢子虫,基于形态学和系统发育分析进行了描述。提出了三种新的组合,viz.Jorgewrightkirkii,Mariorajchenbergiaepitephra,和Mariorajchenbergialeucoplaca。迄今为止,接受了36种大孔菌,并提供了这些物种的鉴定钥匙。此外,亚马逊Dichomus的鉴定,柱状孢菌,并讨论了六孔大孔菌。
    Megasporoporia sensu lato has recently been intensively studied in China and South America, and four independent clades representing four genera have been recognized phylogenetically. In this study, more samples, mostly from subtropical and tropical Asia, Oceania, and East Africa, are analyzed. A phylogeny based on a 4-gene dataset of sequences (ITS + nLSU + mtSSU + tef) has confirmed the presence of four genera in Megasporoporia sensu lato: Jorgewrightia, Mariorajchenbergia, Megasporia, and Megasporoporia sensu stricto. Six new species, Jorgewrightia austroasiana, Jorgewrightia irregularis, Jorgewrightia tenuis, Mariorajchenbergia subleucoplaca, Megasporia olivacea, and Megasporia sinuosa, are described based on morphology and phylogenetic analysis. Three new combinations are proposed, viz. Jorgewrightia kirkii, Mariorajchenbergia epitephra, and Mariorajchenbergia leucoplaca. To date, 36 species of Megasporoporia sensu lato are accepted and an identification key to these species is provided. In addition, the identification of Dichomitus amazonicus, Dichomitus cylindrosporus, and Megasporoporia hexagonoides is discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    B家族DNA聚合酶,在真核生物中发现,古细菌,病毒,还有一些细菌,参与DNA复制和修复。从古细菌和细菌B家族DNA聚合酶的N端开始,三个域包括N端,外切核酸酶,和聚合酶结构域。古细菌B家族DNA聚合酶的N末端结构域具有保守的脱氧尿嘧啶结合口袋,用于特异性结合DNA上的脱氧尿嘧啶碱基。外切核酸酶结构域负责去除错配的碱基对。聚合酶结构域是核心功能结构域,具有由手指组成的高度保守的结构,手掌和拇指子域。先前的研究表明,拇指亚结构域主要充当DNA结合元件,并与外切核酸酶结构域和棕榈亚结构域协调。为了进一步阐明古细菌B家族DNA聚合酶的拇指亚结构域的可能功能,火灾热球菌DNA聚合酶的拇指亚结构域被突变,并对三种活动的影响进行了表征。我们的结果表明,拇指亚结构域作为共同的结构元件参与了古细菌B家族DNA聚合酶的三种活性。N-末端脱氧尿嘧啶结合口袋和拇指亚结构域对于脱氧尿嘧啶结合是关键的。此外,拇指亚结构域协助DNA聚合和水解反应,但它不有助于DNA聚合的保真度。
    B-family DNA polymerases, which are found in eukaryotes, archaea, viruses, and some bacteria, participate in DNA replication and repair. Starting from the N-terminus of archaeal and bacterial B-family DNA polymerases, three domains include the N-terminal, exonuclease, and polymerase domains. The N-terminal domain of the archaeal B-family DNA polymerase has a conserved deoxyuracil-binding pocket for specially binding the deoxyuracil base on DNA. The exonuclease domain is responsible for removing the mismatched base pair. The polymerase domain is the core functional domain and takes a highly conserved structure composed of fingers, palm and thumb subdomains. Previous studies have demonstrated that the thumb subdomain mainly functions as a DNA-binding element and has coordination with the exonuclease domain and palm subdomain. To further elucidate the possible functions of the thumb subdomain of archaeal B-family DNA polymerases, the thumb subdomain of Pyrococcus furiosus DNA polymerase was mutated, and the effects on three activities were characterized. Our results demonstrate that the thumb subdomain participates in the three activities of archaeal B-family DNA polymerases as a common structural element. Both the N-terminal deoxyuracil-binding pocket and thumb subdomain are critical for deoxyuracil binding. Moreover, the thumb subdomain assists DNA polymerization and hydrolysis reactions, but it does not contribute to the fidelity of DNA polymerization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲型流感病毒(IAV)RNA依赖性RNA聚合酶(vPol)是由PB2,PB1和PA组成的异源三聚体,which,连同vRNA和核蛋白(NP),形成病毒核糖核蛋白(vRNP)复合物以指导病毒基因组的转录和复制。宿主因子ANP32蛋白已被证明与vRNP相关,并且对于禽流感病毒的聚合酶活性和跨物种限制至关重要。然而,ANP32支持聚合酶活性的分子机制尚不清楚.这里,我们发现KPNA6与流感病毒的ANP32A/B和vRNP相关.KPNA6的敲除和过表达都通过抑制聚合酶活性来下调流感病毒的复制,表明一定水平的KPNA6有利于流感病毒的高效复制。此外,我们证明过表达KPNA6或其核输入域阴性突变抑制了ANP32和vRNP之间的相互作用,从而降低聚合酶活性。我们的结果揭示了KPNA6在与ANP32A/B和vRNP相互作用以维持病毒聚合酶活性中的作用,并为进一步理解ANP32支持流感聚合酶的机制提供了新的见解。重要性宿主因子ANP32在支持流感病毒的聚合酶活性中起着重要作用,但是潜在的机制在很大程度上是未知的。这里,我们认为KPNA6参与ANP32A/B的功能,通过与vRNP和ANP32A/B相互作用来支持流感病毒聚合酶。KPNA6-ANP32-vRNP复合物中适当量的KPNA6和ANP32蛋白对于维持病毒聚合酶活性至关重要。KPNA6可能有助于维持细胞核中vRNA和ANP32蛋白之间的稳定相互作用,并且此函数独立于KPNA6的已知导入域。我们的研究揭示了与支持病毒聚合酶的ANP32蛋白相关的KNPA6的作用,并为开发抗病毒策略提供了新的视角。
    Influenza A virus (IAV) RNA-dependent RNA polymerase (vPol) is a heterotrimer composed of PB2, PB1, and PA, which, together with vRNA and nucleoprotein (NP), forms viral ribonucleoprotein (vRNP) complex to direct the transcription and replication of the viral genome. Host factor ANP32 proteins have been proved to be associated with vRNP and are essential for polymerase activity and cross-species restriction of avian influenza virus. However, the molecular mechanism by which ANP32 supports polymerase activity is largely unknown. Here, we identified that KPNA6 is associated with ANP32A/B and vRNP of the influenza virus. Both knockout and overexpression of KPNA6 downregulate the replication of the influenza virus by inhibiting the polymerase activity, indicating that a certain level of KPNA6 is beneficial for efficient replication of the influenza virus. Furthermore, we demonstrate that overexpression of KPNA6 or its nuclear importing domain negative mutation inhibited the interaction between ANP32 and vRNP, thus reducing the polymerase activity. Our results revealed the role of KPNA6 in interacting with both ANP32A/B and vRNP to maintain viral polymerase activity and provided new insights for further understanding of the mechanism by which ANP32 supports influenza polymerase. IMPORTANCE Host factor ANP32 plays a fundamental role in supporting the polymerase activity of influenza viruses, but the underlying mechanism is largely unknown. Here, we propose that KPNA6 is involved in the function of ANP32A/B to support influenza virus polymerase by interacting with both vRNP and ANP32A/B. The proper amount of KPNA6 and ANP32 proteins in the KPNA6-ANP32-vRNP complex is crucial for maintaining the viral polymerase activity. The KPNA6 may contribute to maintaining stable interaction between vRNA and ANP32 proteins in the nucleus, and this function is independent of the known importing domain of KPNA6. Our research reveals a role of KNPA6 associated with ANP32 proteins that support the viral polymerase and suggests a new perspective for developing antiviral strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hepatitis B virus (HBV) is an important pathogen that causes different liver diseases such as viral hepatitis and liver cirrhosis. HBV pregenomic RNA (pgRNA) plays a crucial role in HBV life cycle, which is not only the translation template of core (C) and polymerase (P), but also the template of reverse transcription. The ratio of P protein to core protein is tightly regulated. Since P and core are both translated by pgRNA and the open reading frame (ORF) of P is located downstream of the ORF of core, how to initiate P protein translation is a key scientific question. Previous studies suggest that P can be translated through different mechanisms, such as leaky scanning and reinitiation. In this review, we summarized the proposed mechanisms relevant to the translation of polymerase from HBV pgRNA through literature review and derivation.
    乙型肝炎病毒(HBV)是导致肝炎、肝硬化等肝脏疾病的重要病原体。HBV前基因组RNA(pgRNA)在其生命周期中发挥着重要作用,它既是翻译病毒核心蛋白和聚合酶蛋白(polymerase,P)的信使RNA,也是病毒进行逆转录的模板。作为HBV的重要结构蛋白,P蛋白和core蛋白的比例在HBV复制中受到严格调控。由于二者均由pgRNA翻译产生,且P蛋白的开放阅读框(ORF)位于核心蛋白ORF的下游,P蛋白的翻译如何启动是一个十分关键的科学问题。既往研究认为,P蛋白可能通过泄露扫描、翻译再起始等机制来启动翻译。本文通过文献阅读与推演,对HBV pgRNA选择性翻译P蛋白的机制进展进行综述,并尝试总结了起始P蛋白翻译的可能机制。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号