polymerase

聚合酶
  • 文章类型: Journal Article
    人末端脱氧核苷酸转移酶(TdT)可以在V(D)J重组和DNA修复过程中通过非同源末端连接催化模板非依赖性DNA合成。将核苷酸不依赖模板随机添加到单链DNA的能力使得该聚合酶可用于各种分子生物学应用,包括使用修饰的dNTP顺序逐步合成寡核苷酸。尽管如此,该酶应用的严重限制是人TdT对dNTP的强选择性,其顺序为dGTP>dTTP≈dATP>dCTP。这项研究涉及分子动力学,以模拟氨基酸取代对酶对dNTP的选择性的潜在影响。发现在395和456位的含氮碱基和氨基酸残基之间形成稳定的氢键对于dNTP的偏好是至关重要的。通过分子动力学模拟分析了这些位置的一组单取代和双取代突变体。数据揭示了两个TdT突变体-含有取代D395N或取代D395N+E456N-与野生型酶相比对各种dNTP具有基本上相等的选择性。这些结果将能够合理设计具有相等的dNTP选择性的TdT样酶,用于生物技术应用。
    Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential stepwise synthesis of oligonucleotides using modified dNTP. Nonetheless, a serious limitation to the applications of this enzyme is strong selectivity of human TdT toward dNTPs in the order dGTP > dTTP ≈ dATP > dCTP. This study involved molecular dynamics to simulate a potential impact of amino acid substitutions on the enzyme\'s selectivity toward dNTPs. It was found that the formation of stable hydrogen bonds between a nitrogenous base and amino acid residues at positions 395 and 456 is crucial for the preferences for dNTPs. A set of single-substitution and double-substitution mutants at these positions was analyzed by molecular dynamics simulations. The data revealed two TdT mutants-containing either substitution D395N or substitutions D395N+E456N-that possess substantially equalized selectivity toward various dNTPs as compared to the wild-type enzyme. These results will enable rational design of TdT-like enzymes with equalized dNTP selectivity for biotechnological applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于获得疫苗的机会有限,COVID-19大流行继续威胁着全球的医疗保健系统,次优治疗方案,以及新的和更具传染性的SARS-CoV-2变种的不断涌现。病毒基因和突变的反向遗传学研究已被证明对推进基础病毒研究非常有价值,导致治疗学的发展。通过将COVID-19相关病毒分离株(DK-AHH1)的序列克隆到细菌人工染色体(BAC)中,我们开发了一种功能性且用途广泛的全长SARS-CoV-2感染系统。将体外转录本RNA转染到VeroE6细胞中后回收的病毒显示出与DK-AHH1病毒分离株相似的生长动力学和remdesivir易感性。报告基因的插入,绿色荧光蛋白,和纳米荧光素酶进入ORF7基因组区域导致高水平的报告活性,这促进了高通量处理实验。我们发现假定的冠状病毒remdesivir抗性相关取代F480L和V570L-和自然发现的多态性A97V,P323L,和N491S,所有nsp12患者均未降低SARS-CoV-2对瑞德西韦的易感性.缺失穗(S)的纳米荧光素酶报告基因克隆,信封(E),膜(M)蛋白表现出高水平的瞬时复制,被Remdesivir抑制了,因此可以作为一种有效的非感染性亚基因组复制子系统。开发的SARS-CoV-2反向遗传学系统,包括重组体,以修饰具有自主基因组RNA复制的感染性病毒和非感染性亚基因组复制子,将允许高通量细胞培养研究-提供对这种冠状病毒的基本生物学的基本理解。我们已经证明了该系统在快速引入nsp12突变并研究其对remdesivir疗效的影响方面的实用性,在世界范围内用于治疗COVID-19。我们的系统提供了一个平台,可以有效地测试药物的抗病毒活性和SARS-CoV-2突变体的表型。
    The COVID-19 pandemic continues to threaten healthcare systems worldwide due to the limited access to vaccines, suboptimal treatment options, and the continuous emergence of new and more transmissible SARS-CoV-2 variants. Reverse-genetics studies of viral genes and mutations have proven highly valuable in advancing basic virus research, leading to the development of therapeutics. We developed a functional and highly versatile full-length SARS-CoV-2 infectious system by cloning the sequence of a COVID-19 associated virus isolate (DK-AHH1) into a bacterial artificial chromosome (BAC). Viruses recovered after RNA-transfection of in vitro transcripts into Vero E6 cells showed growth kinetics and remdesivir susceptibility similar to the DK-AHH1 virus isolate. Insertion of reporter genes, green fluorescent protein, and nanoluciferase into the ORF7 genomic region led to high levels of reporter activity, which facilitated high throughput treatment experiments. We found that putative coronavirus remdesivir resistance-associated substitutions F480L and V570L-and naturally found polymorphisms A97V, P323L, and N491S, all in nsp12-did not decrease SARS-CoV-2 susceptibility to remdesivir. A nanoluciferase reporter clone with deletion of spike (S), envelope (E), and membrane (M) proteins exhibited high levels of transient replication, was inhibited by remdesivir, and therefore could function as an efficient non-infectious subgenomic replicon system. The developed SARS-CoV-2 reverse-genetics systems, including recombinants to modify infectious viruses and non-infectious subgenomic replicons with autonomous genomic RNA replication, will permit high-throughput cell culture studies-providing fundamental understanding of basic biology of this coronavirus. We have proven the utility of the systems in rapidly introducing mutations in nsp12 and studying their effect on the efficacy of remdesivir, which is used worldwide for the treatment of COVID-19. Our system provides a platform to effectively test the antiviral activity of drugs and the phenotype of SARS-CoV-2 mutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    解旋酶是分离核酸双链结构(DNA/DNA,DNA/RNA,或RNA/RNA),因此对于DNA复制和维持核酸完整性至关重要。我们回顾了从DNA和RNA解旋酶的机制及其与其他蛋白质相互作用的单分子研究中出现的图片。这些被大量研究掩盖的研究发现了许多特征,比如DNA链转换,解旋酶和聚合酶之间的机械(而不是生化)偶联,解旋酶诱导的重新杂交和停滞的叉拯救。
    Helicases are a broad family of enzymes that separate nucleic acid double strand structures (DNA/DNA, DNA/RNA, or RNA/RNA) and thus are essential to DNA replication and the maintenance of nucleic acid integrity. We review the picture that has emerged from single molecule studies of the mechanisms of DNA and RNA helicases and their interactions with other proteins. Many features have been uncovered by these studies that were obscured by bulk studies, such as DNA strands switching, mechanical (rather than biochemical) coupling between helicases and polymerases, helicase-induced re-hybridization and stalled fork rescue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    复制体是负责DNA复制的多蛋白分子机制。它由几种特殊的蛋白质组成,每种蛋白质都具有专门的酶活性,特别是,解旋酶解开双链DNA和DNA聚合酶催化DNA的合成。了解复制体在DNA复制过程中如何发挥作用,需要方法来剖析单个蛋白质和多蛋白共同作用的机制。单分子光学捕获技术已被证明是一种强大的方法,提供在单分子水平上观察和操纵生物分子的独特能力,并提供对分子马达的机制及其在复合物中的相互作用和协调的见解。这里,我们描述了应用这些技术来研究噬菌体T7复制体个体蛋白质动力学的实用指南,以及它们之间的协调。我们还总结了这些研究的主要发现,包括T7复制中的核苷酸特异性解旋酶滑移和新的病变旁路途径。
    The replisome is a multiprotein molecular machinery responsible for the replication of DNA. It is composed of several specialized proteins each with dedicated enzymatic activities, and in particular, helicase unwinds double-stranded DNA and DNA polymerase catalyzes the synthesis of DNA. Understanding how a replisome functions in the process of DNA replication requires methods to dissect the mechanisms of individual proteins and of multiproteins acting in concert. Single-molecule optical-trapping techniques have proved to be a powerful approach, offering the unique ability to observe and manipulate biomolecules at the single-molecule level and providing insights into the mechanisms of molecular motors and their interactions and coordination in a complex. Here, we describe a practical guide to applying these techniques to study the dynamics of individual proteins in the bacteriophage T7 replisome, as well as the coordination among them. We also summarize major findings from these studies, including nucleotide-specific helicase slippage and new lesion bypass pathway in T7 replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Minigenome assays have been essential tools in the understanding of viral transcription and RNA replication for respiratory syncytial virus (RSV). Here, we describe the RSV minigenome assay for determining transcription by the viral polymerase in the absence of infection. We detail two different methods of detecting viral RNA synthesis: a firefly luciferase assay for rapid and sensitive measurement of RSV polymerase activity; and a real-time quantitative PCR method for determination of specific effects on the transcription of individual viral genes and the polar transcription gradient of RSV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号