Protein corona

蛋白质电晕
  • 文章类型: Journal Article
    纳米塑料与微生物的相互作用和结合,酶,植物蛋白,和其他物质在当前的研究中引起了相当大的关注。这项研究专门检查了NP和蛋白质的相互作用和生物学效应。研究结果表明,外部包裹的蛋白质的存在改变了纳米塑料的原始形态和表面粗糙度,导致在表面上形成不均匀分布的日冕。这证实了纳米塑料可以与蛋白质相互作用以形成蛋白质电晕。该研究表征了细菌蛋白质在未修饰的细菌上的吸附行为,氨基修饰,以及使用Langmuir和Freundlich等温线模型进行羧基改性的纳米塑料,表明三种纳米塑料在细菌蛋白上的吸附过程主要受化学吸附控制。荧光光谱显示未改性的纳米塑料具有更高的结合亲和力。未修饰的NP的蛋白质冠中的近40%的蛋白质参与代谢物产生和电子传递过程。近50%的蛋白质在蛋白质冠的氨基修饰的NP参与细胞代谢过程,其次是进行氧化还原反应的酶。羧基修饰的NP的蛋白质冠具有参与代谢途径的最高数量的蛋白质,其次是参与能量-电子转移的蛋白质。与纯纳米塑料相比,在经过不同表面修饰的NPs上形成蛋白质冠可以在一定程度上降低纳米塑料对细菌的毒性,特别是氨基修饰的NP,这表明细菌存活率显著增加。NPs上蛋白冠的形成导致细菌ROS和MDA生成不同程度的减少,氨基修饰的NPs减少最多;SOD和CAT表现出不同程度的增加和减少。这些发现不仅促进了我们对NP的生物学影响的理解,而且为未来对现实环境中NP污染途径的深入研究提供了基础。
    The interaction and combination of nanoplastics with microorganisms, enzymes, plant proteins, and other substances have garnered considerable attention in current research. This study specifically examined the interaction and biological effects of NPs and proteins. The findings indicated that the presence of externally wrapped proteins alters the original morphology and surface roughness of nanoplastics, leading to the formation of unevenly distributed coronas on the surface. This confirms that nanoplastics can interact with proteins to form protein coronas. The study characterized the adsorption behavior of bacterial proteins on unmodified, amino-modified, and carboxyl-modified nanoplastics using Langmuir and Freundlich isotherm models, showing that the adsorption process of the three nanoplastics on bacterial proteins was mainly controlled by chemisorption. Fluorescence spectroscopy revealed a higher binding affinity of unmodified nanoplastics. Nearly 40 % of the proteins in the protein corona of unmodified NPs are involved in metabolite production and electron transport processes. Nearly 50 % of the proteins in the protein corona of amino-modified NPs are involved in cellular metabolic processes, followed by enzymes that carry out redox reactions. The protein corona of carboxyl-modified NPs has the highest number of proteins involved in metabolic pathways, followed by proteins involved in energy-electron transfer. The formation of protein coronas on NPs with different surface modifications can reduce the toxicity of nanoplastics to bacteria to a certain extent compared to pure nanoplastics, especially amino-modified NPs, which show a significant increase in bacterial survival. The formation of protein coronas on NPs leads to varying degrees of decrease in bacterial ROS and MDA generation, with amino-modified NPs showing the most reduction; SOD and CAT exhibit varying degrees of increase and decrease. These findings not only advance our understanding of the biological impacts of NPs but also provide a basis for future in-depth investigations into the pathways of NP contamination in real environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于溶解性和稳定性差,多酚化合物的低生物利用度是主要挑战。多酚在玉米醇溶蛋白基复合纳米粒子中的包封可以改善水分散性,稳定性,有针对性的交付,和在胃肠道中控制释放多酚。在这项研究中,我们研究了荧光特性,生物活性,和消化过程中多酚的微观结构特征,揭示了玉米醇溶蛋白纳米颗粒保护多酚免受胃降解并促进其在小肠中的持续释放。还探索了不同离子种类和盐离子浓度对多酚复合物递送系统消化性质的影响。此外,消化过程中“蛋白质电晕”结构的形成可能会影响生物利用度。这些发现突出了纳米颗粒制剂改善多酚稳定性和吸收的潜力。本研究结果可为多酚生物利用度增强研究提供新的见解和参考。
    The low bioavailability of polyphenolic compounds due to poor solubility and stability is a major challenge. Encapsulation of polyphenols in zein-based composite nanoparticles can improve the water dispersion, stability, targeted delivery, and controlled release of polyphenols in the gastrointestinal tract. In this study, we investigated the fluorescence properties, bioactivity, and microstructural characteristics of polyphenols during digestion, revealing that zein nanoparticles protect polyphenols from gastric degradation and promote their sustained release in the small intestine. The effects of different ionic species and salt ion concentrations on the digestive properties of polyphenol complex delivery systems have also been explored. In addition, the formation of \"protein corona\" structures during digestion may affect bioavailability. These findings highlight the potential of nanoparticle formulations to improve polyphenol stability and absorption. The results of this study may provide new insights and references for the study of polyphenol bioavailability enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    塑料产品在日常生活中的广泛使用引起了人们对与纳米塑料(NPs)相关的健康危害的担忧。当暴露时,NPs很可能渗入血液,与血浆蛋白相互作用,并触发巨噬细胞识别和清除。在这项研究中,我们专注于建立高密度(HDPE)和低密度(LDPE)聚乙烯(PE)NP的独特蛋白质冠状特征之间的相关性,以及它们对巨噬细胞识别和细胞毒性的最终影响.我们观察到低密度和高密度脂蛋白受体(LDLR和SR-B1),由载脂蛋白促进,在PE-NP识别中发挥了重要作用。因此,PE-NP激活caspase-3/GSDME途径并最终导致焦亡。先进的成像技术,包括无标记散射光共聚焦成像和具有3D断层重建(纳米CT)的低温软X射线透射显微镜,提供了可视化NPs-细胞相互作用的强大见解。这些发现强调了NP对巨噬细胞的潜在风险,并引入了研究NP在生物系统中行为的分析方法。
    The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在血管内应用时,即,癌症治疗,纳米粒子(NPs)需要通过血液循环,维持血清蛋白相互作用,在它们穿透血管并到达目标位置以释放有效载荷药物之前。对于这样的交付过程,很难理解NP表面的形态变化并评估其对靶向递送的相关影响。在这里,我们使用具有不同表面修饰的二氧化硅NP来证明NP-血液蛋白相互作用的应用过程中NP的形态影响,血管内皮细胞渗透,随后的靶向递送和光动力疗法疗效以及形态学设计用于追求高载药量.与固体和介孔NP相比,我们发现尖刺管状NPs有助于保留NPs的防污特性(或“蛋白质电晕”的脱落),在体外和体内促进更好的内皮渗透和更少的破坏。这可能归因于尖状管状NP上的多个尖峰限制了NP-蛋白质相互作用区域并促进了NP-蛋白质空间位阻。在分子模拟中,我们确定NPs上的尖管状形态修饰增强了相互作用自由能,同时降低了氨基酸数量和随后与内皮细胞VE-钙粘蛋白接触的频率。因此,这些NP在减轻对VE-cadherin稳定性和内皮细胞完整性的损害方面具有优势。我们在这里的发现表明,我们可以利用表面形态修饰来设计尖刺的管状NP,为了提高NP递送效率,同时抑制血管内皮微环境的渗漏,在纳米医学在癌症治疗中的应用中与肿瘤迁移特别相关。
    Upon intravascular applications, i.e., cancer treatment, nanoparticles (NPs) are required to deliver through blood circulation, sustain serum protein interactions, before they penetrate the blood vessels and reach targeted sites for payload drug release. For a delivery process as such, it is elusive and difficult to comprehend the morphological change of NP surface and evaluate associated effects on its targeted delivery. Herein, we used silica NPs with different surface modifications to demonstrate the morphological impact of NPs during the application of the NP-blood protein interaction, vascular endothelial cell penetration, subsequent targeted delivery and photodynamic therapy efficacy, and pursue high drug-load NPs with surface designs. Compared to solid and mesoporous NPs, we found the spiky tubular NPs reserved the NPs\' antifouling properties (or shedding of \"protein corona\"), promoted better endothelial penetration and less destruction in vitro and in vivo. Such effects could be attributed to their spiky surface structures, which can limit the NP-protein interaction area and promote the NP-protein steric hindrance. Further in molecular simulations, we determined that the spiky tubular morphological modification on NPs enhanced the interaction free energy and lowered the amino acids number and the subsequent frequency in contacting with VE-cadherin of vascular endothelia. As a result, the spiky tubular NPs demonstrated its advantages in mitigating damages to VE-cadherin stability and endothelial cell integrity. Exploiting such spiky tubular surface modification, we can improve the NP delivery efficiency and prohibit the leakiness of vascular endothelia, helping address challenges faced by tumor migration in nanomedicine applications for cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质电晕的形成使纳米医学具有独特的生物学特性,深刻地影响着他们的身体命运。非特异性纳米颗粒-蛋白质相互作用通常是高度异质的,这可能导致独特的生物学行为和体内命运的单个纳米颗粒,保持未充分开发。为了解决这个问题,我们已经建立了一种原位方法,可以在单个纳米颗粒水平上定量检查纳米颗粒-蛋白质的吸附。该方法集成了双重荧光定量技术,其中首先通过纳米流式细胞术单独分析纳米颗粒以检测来自吸附蛋白质的荧光信号。然后通过用酶标仪定量校准将获得的荧光强度翻译成蛋白质量。因此,这种方法能够分析纳米蛋白质相互作用的颗粒间异质性,以及血清中蛋白质吸附动力学和纳米颗粒聚集状态的原位监测,全面了解纳米生物相互作用的预处理,并预测纳米药物的体内命运。
    The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基体效应限制了表面增强拉曼散射(SERS)技术在食品安全领域的应用。这项研究通过使用模型系统来检测牛奶中的三聚氰胺SERS,从蛋白质电晕的角度对其进行了阐明。与三聚氰胺标准溶液相比,在牛奶基质中观察到较高的检测限(1mg/L和10mg/L)。三聚氰胺信号显示乳清蛋白溶液减少80%,表明蛋白质对SERS信号有显著影响。颗粒大小的变化,ζ电位和紫外-可见光谱表明AuNP与乳清蛋白相互作用。形成蛋白质冠抑制三聚氰胺诱导的AuNPs聚集,减少“热点”的数量和三聚氰胺在AuNPs上的吸附(从0.28mg/L减少到0.07mg/L),这可能是造成信号丢失的原因。从蛋白质电晕中发现的基体效应为制定降低SERS应用中基体效应的策略提供了新的见解。
    Matrix effects limit the application of surface-enhanced Raman scattering (SERS) technology in the field of food safety. This study elucidated it from the perspective of protein corona by employing a model system for melamine SERS detection in milk. Compared with the melamine standard solution, higher detection limits (1 mg/L and 10 mg/L) are observed in milk matrix. The melamine signal exhibits an 80% reduction in whey protein solution, suggesting that protein has a significant impact on SERS signals. The changes in particle size, zeta potential and UV-vis spectra indicate the AuNPs interact with whey protein. Forming protein corona inhibits the melamine-induced AuNPs aggregation, reducing the number of \'hot spot\' and the adsorption of melamine on AuNPs (from 0.28 mg/L to 0.07 mg/L), which may be responsible for signal loss. The found matrix effect from protein corona provides new insights for developing strategies about reducing matrix effect in SERS application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质冠(PC)的形成对于促进纳米颗粒(NP)的体内递送是重要的。然而,对口腔递送的生理环境中形成的PC知之甚少。这里,我们设计了七种类型的三甲基壳聚糖-半胱氨酸(TC)NP,具有不同的分子量,季铵化程度,和硫醇化程度,为了深入研究口服给药的生理环境中形成的各种PC对聚合物NPs体内基因传递的影响,进一步构建了NPs表面特征与口服基因传递功效的关系。我们的研究结果表明,TC7NPs,具有高分子量,适度季铵化,和高巯基含量,调节胃肠道中的PC形成,从而减小颗粒大小并促进装载基因的TC7NP的口服递送。通过载脂蛋白(Apo)B48在肠组织中的原位吸附,将TC7NPs靶向巨噬细胞,通过巨噬细胞的天然肿瘤归巢能力提高体内抗肝癌疗效。我们的结果表明,基因的有效口服递送可以通过原位定制的富含ApoB48的PC来实现,为治疗巨噬细胞相关疾病提供了一种有希望的方式。
    The formation of protein corona (PC) is important for promoting the in vivo delivery of nanoparticles (NPs). However, PC formed in the physiological environment of oral delivery is poorly understood. Here, we engineered seven types of trimethyl chitosan-cysteine (TC) NPs, with distinct molecular weights, quaternization degrees, and thiolation degrees, to deeply investigate the influence of various PC formed in the physiological environment of oral delivery on in vivo gene delivery of polymeric NPs, further constructing the relationship between the surface characteristics of NPs and the efficacy of oral gene delivery. Our findings reveal that TC7 NPs, with high molecular weight, moderate quaternization, and high sulfhydryl content, modulate PC formation in the gastrointestinal tract, thereby reducing particle size and promoting oral delivery of gene loaded TC7 NPs. Orally delivered TC7 NPs target macrophages by in situ adsorption of apolipoprotein (Apo) B48 in intestinal tissue, leading to the improved in vivo antihepatoma efficacy via the natural tumor homing ability of macrophages. Our results suggest that efficient oral delivery of genes can be achieved through an in situ customized ApoB48-enriched PC, offering a promising modality in treating macrophage-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血清蛋白质生物标志物的检测由于血清的优越复杂性而极具挑战性。这里,我们报道了一种从血清中提取蛋白质组的方法。它使用磁性纳米颗粒-蛋白质电晕和多重适体面板,我们将其与纳米颗粒-蛋白质电晕孵育以识别生物标志物。为了将蛋白质生物标志物检测转移到适体检测,我们建立了一个基于CRISPR/Cas12a的正交多重适体传感(COMPASS)平台,通过分析临床非小细胞肺癌(NSCLC)血清样本的蛋白质冠适体.此外,我们确定了九个(FOON)面板中的四个(包括HE4、NSE、法新社,和VEGF165)是非小细胞肺癌诊断中COMPASS最具成本效益和准确性的面板。FOON组内部和外部队列对NSCLC的诊断准确率为95.56%(ROC-AUC=99.40%)和89.58%(ROC-AUC=95.41%),分别。我们开发的COMPASS技术避免了具有挑战性的多重血清蛋白扩增问题,并避免了血清中的适体降解。因此,这个新的COMPASS可以导致一个简单的发展,成本效益高,智能,以及用于大型队列癌症筛查的高通量诊断平台。
    Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米药物已经大大推进了各种疾病的诊断和治疗策略的发展,虽然他们仍然遇到许多挑战。一旦进入人体,纳米药物与生物分子相互作用形成一层蛋白质,它被定义为影响纳米药物生物学特性的蛋白质冠。传统方法主要集中在设计隐形纳米药物以逃避生物分子吸附;然而,由于体内生物环境的复杂性,这种方法不能完全防止生物分子吸附。随着蛋白质电晕研究的进展,操纵蛋白质冠以调节纳米药物的体内行为已成为研究热点。在这次审查中,现代策略侧重于通过操纵蛋白质电晕来影响纳米药物在体内的生物学功效,随着它们在各种疾病中的广泛应用,强调和讨论。最后,还简要讨论了这个重要但具有挑战性的研究领域的未来方向。本文分为:纳米技术生物学方法>生物学治疗方法和药物发现中的纳米级系统>新兴技术生物学启发的纳米材料>蛋白质和基于病毒的结构。
    Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于血脑屏障(BBB),脑靶向药物递送提出了巨大的挑战。在之前的研究中,我们开发了一种肽修饰的隐形脂质体(SP-sLip),通过血浆中载脂蛋白的吸附来增强BBB的渗透。SP是源自淀粉样蛋白β肽(Aβ1-42)的25至35的11个氨基酸的肽,这是载脂蛋白的天然配体。尽管SP-sLip表现出有效的脑靶向性能,自聚合和存储的不稳定性限制了其进一步的应用。在这项研究中,我们根据具有D-氨基酸的SP的反向序列开发了D-肽配体,被称为DSP,来解决问题。值得注意的是,与SP肽相比,DSP表现出降低的自聚集倾向和优异的稳定性。此外,与SP-sLip相比,DSP修饰的sLip(DSP-sLip)显示出增强的稳定性(>2周),延长血液循环(AUC增加44.4%),减少肝脏和脾脏积累(减少2.23倍和1.86倍),具有相当的脑靶向效率。类似于SP-sLip,DSP-sLip选择性吸附载脂蛋白A1,E,和J在血液中形成功能化的蛋白质电晕,从而通过载脂蛋白受体介导的胞吞作用穿过BBB。这些发现强调了配体稳定性在脑靶向脂质体的体外和体内性能中的重要性。从而为高效稳定的纳米载体的设计和优化铺平了道路。
    Brain-targeted drug delivery poses a great challenge due to the blood-brain barrier (BBB). In a previous study, we have developed a peptide-modified stealth liposome (SP-sLip) to enhance BBB penetration via the adsorption of apolipoproteins in plasma. SP is an 11-amino acid peptide derived from 25 to 35 of the Amyloid β peptide (Aβ1-42), which is a nature ligand of apolipoproteins. Although freshly prepared SP-sLip exhibited efficient brain targeting performance, it occured self-aggregation and instability in storage. In this study, we developed a D-peptide ligand according to the reverse sequence of SP with D-amino acids, known as DSP, to improve the stability in storage. Notably, DSP exhibited a reduced tendency for self-aggregation and improved stability in comparison to the SP peptide. Furthermore, compared to SP-sLip, DSP-modified sLip (DSP-sLip) demonstrated enhanced stability (>2 weeks), prolonged blood circulation (AUC increased 44.4%), reduced liver and spleen accumulation (reduced by 2.23 times and 1.86 times) with comparable brain-targeting efficiency. Similar to SP-sLip, DSP-sLip selectively adsorbed apolipoprotein A1, E, and J in the blood to form functionalized protein corona, thus crossing BBB via apolipoprotein receptor-mediated transcytosis. These findings underscored the importance of ligand stability in the in vitro and in vivo performance of brain-targeted liposomes, therefore paving the way for the design and optimization of efficient and stable nanocarriers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号