Protein corona

蛋白质电晕
  • 文章类型: Journal Article
    纳米塑料与微生物的相互作用和结合,酶,植物蛋白,和其他物质在当前的研究中引起了相当大的关注。这项研究专门检查了NP和蛋白质的相互作用和生物学效应。研究结果表明,外部包裹的蛋白质的存在改变了纳米塑料的原始形态和表面粗糙度,导致在表面上形成不均匀分布的日冕。这证实了纳米塑料可以与蛋白质相互作用以形成蛋白质电晕。该研究表征了细菌蛋白质在未修饰的细菌上的吸附行为,氨基修饰,以及使用Langmuir和Freundlich等温线模型进行羧基改性的纳米塑料,表明三种纳米塑料在细菌蛋白上的吸附过程主要受化学吸附控制。荧光光谱显示未改性的纳米塑料具有更高的结合亲和力。未修饰的NP的蛋白质冠中的近40%的蛋白质参与代谢物产生和电子传递过程。近50%的蛋白质在蛋白质冠的氨基修饰的NP参与细胞代谢过程,其次是进行氧化还原反应的酶。羧基修饰的NP的蛋白质冠具有参与代谢途径的最高数量的蛋白质,其次是参与能量-电子转移的蛋白质。与纯纳米塑料相比,在经过不同表面修饰的NPs上形成蛋白质冠可以在一定程度上降低纳米塑料对细菌的毒性,特别是氨基修饰的NP,这表明细菌存活率显著增加。NPs上蛋白冠的形成导致细菌ROS和MDA生成不同程度的减少,氨基修饰的NPs减少最多;SOD和CAT表现出不同程度的增加和减少。这些发现不仅促进了我们对NP的生物学影响的理解,而且为未来对现实环境中NP污染途径的深入研究提供了基础。
    The interaction and combination of nanoplastics with microorganisms, enzymes, plant proteins, and other substances have garnered considerable attention in current research. This study specifically examined the interaction and biological effects of NPs and proteins. The findings indicated that the presence of externally wrapped proteins alters the original morphology and surface roughness of nanoplastics, leading to the formation of unevenly distributed coronas on the surface. This confirms that nanoplastics can interact with proteins to form protein coronas. The study characterized the adsorption behavior of bacterial proteins on unmodified, amino-modified, and carboxyl-modified nanoplastics using Langmuir and Freundlich isotherm models, showing that the adsorption process of the three nanoplastics on bacterial proteins was mainly controlled by chemisorption. Fluorescence spectroscopy revealed a higher binding affinity of unmodified nanoplastics. Nearly 40 % of the proteins in the protein corona of unmodified NPs are involved in metabolite production and electron transport processes. Nearly 50 % of the proteins in the protein corona of amino-modified NPs are involved in cellular metabolic processes, followed by enzymes that carry out redox reactions. The protein corona of carboxyl-modified NPs has the highest number of proteins involved in metabolic pathways, followed by proteins involved in energy-electron transfer. The formation of protein coronas on NPs with different surface modifications can reduce the toxicity of nanoplastics to bacteria to a certain extent compared to pure nanoplastics, especially amino-modified NPs, which show a significant increase in bacterial survival. The formation of protein coronas on NPs leads to varying degrees of decrease in bacterial ROS and MDA generation, with amino-modified NPs showing the most reduction; SOD and CAT exhibit varying degrees of increase and decrease. These findings not only advance our understanding of the biological impacts of NPs but also provide a basis for future in-depth investigations into the pathways of NP contamination in real environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于溶解性和稳定性差,多酚化合物的低生物利用度是主要挑战。多酚在玉米醇溶蛋白基复合纳米粒子中的包封可以改善水分散性,稳定性,有针对性的交付,和在胃肠道中控制释放多酚。在这项研究中,我们研究了荧光特性,生物活性,和消化过程中多酚的微观结构特征,揭示了玉米醇溶蛋白纳米颗粒保护多酚免受胃降解并促进其在小肠中的持续释放。还探索了不同离子种类和盐离子浓度对多酚复合物递送系统消化性质的影响。此外,消化过程中“蛋白质电晕”结构的形成可能会影响生物利用度。这些发现突出了纳米颗粒制剂改善多酚稳定性和吸收的潜力。本研究结果可为多酚生物利用度增强研究提供新的见解和参考。
    The low bioavailability of polyphenolic compounds due to poor solubility and stability is a major challenge. Encapsulation of polyphenols in zein-based composite nanoparticles can improve the water dispersion, stability, targeted delivery, and controlled release of polyphenols in the gastrointestinal tract. In this study, we investigated the fluorescence properties, bioactivity, and microstructural characteristics of polyphenols during digestion, revealing that zein nanoparticles protect polyphenols from gastric degradation and promote their sustained release in the small intestine. The effects of different ionic species and salt ion concentrations on the digestive properties of polyphenol complex delivery systems have also been explored. In addition, the formation of \"protein corona\" structures during digestion may affect bioavailability. These findings highlight the potential of nanoparticle formulations to improve polyphenol stability and absorption. The results of this study may provide new insights and references for the study of polyphenol bioavailability enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米粒子体内运输的重点主要集中在其组织水平的生物分布和清除上。纳米医学领域的最新进展表明,纳米颗粒对免疫细胞的靶向可用于调节免疫反应并增强对患病组织的治疗性递送。在存在肿瘤病变的情况下,单核细胞-髓源性抑制细胞(M-MDSC)在骨髓中显著扩增,进入外周血,到实体瘤的交通,它们有助于维持免疫抑制肿瘤微环境。在这项研究中,我们研究了PAMAM树状聚合物和M-MDSCs在两种小鼠胶质母细胞瘤模型中的相互作用,通过检查系统注入的树枝状聚合物的细胞水平生物分布动力学。我们发现肿瘤和淋巴器官中的M-MDSCs可以有效内吞羟基树状聚合物。有趣的是,M-MDSCs从骨髓运输到肿瘤有助于肿瘤中羟基树状聚合物的沉积。M-MDSC在体内表现出不同功能的树枝状聚合物的不同内吞能力。这种差异吸收是由与每个树枝状聚合物表面官能团相关的独特血清蛋白介导的。这项研究的结果建立了开发基于树枝状聚合物的免疫疗法的框架,以靶向M-MDSCs用于癌症治疗。
    The focus of nanoparticles in vivo trafficking has been mostly on their tissue-level biodistribution and clearance. Recent progress in the nanomedicine field suggests that the targeting of nanoparticles to immune cells can be used to modulate the immune response and enhance therapeutic delivery to the diseased tissue. In the presence of tumor lesions, monocytic-myeloid-derived suppressor cells (M-MDSCs) expand significantly in the bone marrow, egress into peripheral blood, and traffic to the solid tumor, where they help maintain an immuno-suppressive tumor microenvironment. In this study, we investigated the interaction between PAMAM dendrimers and M-MDSCs in two murine models of glioblastoma, by examining the cell-level biodistribution kinetics of the systemically injected dendrimers. We found that M-MDSCs in the tumor and lymphoid organs can efficiently endocytose hydroxyl dendrimers. Interestingly, the trafficking of M-MDSCs from the bone marrow to the tumor contributed to the deposition of hydroxyl dendrimers in the tumor. M-MDSCs showed different capacities of endocytosing dendrimers of different functionalities in vivo. This differential uptake was mediated by the unique serum proteins associated with each dendrimer surface functionality. The results of this study set up the framework for developing dendrimer-based immunotherapy to target M-MDSCs for cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们最近揭示了各种蛋白质组学设施中蛋白质电晕表征的显着变异性,这表明独立研究之间的数据集没有可比性。这种异质性主要来自样品制备方案的差异,质谱工作流程,和原始数据处理。为了解决这个问题,我们制定了标准化的协议和统一的样品制备工作流程,从我们之前的研究中,将均匀的蛋白质电晕消化物分配到几个表现最好的蛋白质组学中心。我们还研究了使用类似的质谱仪器对数据均匀性,标准化的数据库搜索参数和数据处理工作流程的影响。我们的发现揭示了蛋白质电晕数据均匀性的显着逐步改善,使用类似的仪器和通过统一的数据库搜索,在不同的设施中,蛋白质鉴定的重叠度从11%增加到40%。我们确定了数据异质性背后的关键参数,并为设计实验提供了建议。我们的发现将显着提高蛋白质电晕分析在诊断和治疗应用中的稳健性。
    We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    寡核苷酸治疗剂向大脑的全身性递送是具有挑战性的,但对于用传统小分子药物不可用的脑疾病的治疗是高度期望的。在这项研究中,制备并筛选一组DNA纳米结构以开发用于脑递送寡核苷酸治疗剂的蛋白质电晕辅助平台。静脉注射的DNA纳米结构的生物分布分析表明,立方体形的DNA纳米结构(D-Cb)可以穿透脑血屏障(BBB)并到达脑组织。D-Cb的脑分布水平与与脑靶向配体缀合的其他先前纳米颗粒的水平相当。对D-Cb上形成的蛋白质冠的蛋白质组学分析表明,其大脑分布是由蛋白质冠中的内皮受体靶向配体驱动的,介导跨BBB的胞吞作用。D-Cb随后用于递送反义寡核苷酸(ASO)以治疗小鼠中的多形性成胶质细胞瘤(GBM)。虽然免费的ASO无法到达大脑,加载到D-Cb上的ASO被有效地递送到脑肿瘤区域,它下调靶基因并对GBM发挥抗肿瘤作用。预期D-Cb作为基于蛋白质冠形成的可行平台用于寡核苷酸治疗剂的全身性脑递送。
    The systemic delivery of oligonucleotide therapeutics to the brain is challenging but highly desirable for the treatment of brain diseases undruggable with traditional small-molecule drugs. In this study, a set of DNA nanostructures is prepared and screened them to develop a protein corona-assisted platform for the brain delivery of oligonucleotide therapeutics. The biodistribution analysis of intravenously injected DNA nanostructures reveals that a cube-shaped DNA nanostructure (D-Cb) can penetrate the brain-blood barrier (BBB) and reach the brain tissue. The brain distribution level of D-Cb is comparable to that of other previous nanoparticles conjugated with brain-targeting ligands. Proteomic analysis of the protein corona formed on D-Cb suggests that its brain distribution is driven by endothelial receptor-targeting ligands in the protein corona, which mediate transcytosis for crossing the BBB. D-Cb is subsequently used to deliver an antisense oligonucleotide (ASO) to treat glioblastoma multiforme (GBM) in mice. While free ASO is unable to reach the brain, ASO loaded onto D-Cb is delivered efficiently to the brain tumor region, where it downregulates the target gene and exerts an anti-tumor effect on GBM. D-Cb is expected to serve as a viable platform based on protein corona formation for systemic brain delivery of oligonucleotide therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    塑料产品在日常生活中的广泛使用引起了人们对与纳米塑料(NPs)相关的健康危害的担忧。当暴露时,NPs很可能渗入血液,与血浆蛋白相互作用,并触发巨噬细胞识别和清除。在这项研究中,我们专注于建立高密度(HDPE)和低密度(LDPE)聚乙烯(PE)NP的独特蛋白质冠状特征之间的相关性,以及它们对巨噬细胞识别和细胞毒性的最终影响.我们观察到低密度和高密度脂蛋白受体(LDLR和SR-B1),由载脂蛋白促进,在PE-NP识别中发挥了重要作用。因此,PE-NP激活caspase-3/GSDME途径并最终导致焦亡。先进的成像技术,包括无标记散射光共聚焦成像和具有3D断层重建(纳米CT)的低温软X射线透射显微镜,提供了可视化NPs-细胞相互作用的强大见解。这些发现强调了NP对巨噬细胞的潜在风险,并引入了研究NP在生物系统中行为的分析方法。
    The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用全原子和粗粒模型模拟了以不同比例与血浆蛋白(人血清白蛋白(SA)或免疫球蛋白γ-1(IgG))复合的多个10nm大小的阴离子纳米颗粒。粗粒模拟显示,在蛋白质浓度较低(蛋白质与颗粒比为1)的情况下,单个颗粒的流体动力学半径要比在蛋白质浓度较高或不含蛋白质的情况下大得多。表明仅在如此低的蛋白质浓度下颗粒聚集,与实验一致。这种颗粒聚集归因于静电和疏水性颗粒-蛋白质相互作用,在一定程度上依赖于不同的蛋白质。在全原子模拟中,IgG蛋白在有和没有盐的情况下诱导颗粒聚集,虽然SA蛋白仅在盐的存在下促进颗粒聚集,盐可以削弱通过小于IgG的SA紧密相连的阴离子颗粒之间的静电排斥,这也很符合实验。除了电荷相互作用,颗粒和蛋白质之间的疏水相互作用也很重要,特别是在高盐浓度下,导致颗粒-蛋白质接触面积增加。这些发现有助于解释有关蛋白质浓度和离子强度对颗粒聚集的影响取决于不同的血浆蛋白质的实验观察。用束缚自由能解释,静电,以及颗粒和蛋白质之间的疏水相互作用。
    Multiple 10 nm-sized anionic nanoparticles complexed with plasma proteins (human serum albumin (SA) or immunoglobulin gamma-1 (IgG)) at different ratios are simulated using all-atom and coarse-grained models. Coarse-grained simulations show much larger hydrodynamic radii of individual particles at a low protein concentration (a protein-to-particle ratio of 1) than at high protein concentrations or without proteins, indicating particle aggregation only at such a low protein concentration, in agreement with experiments. This particle aggregation is attributed to both electrostatic and hydrophobic particle-protein interactions, to an extent dependent on different proteins. In all-atom simulations, IgG proteins induce particle aggregation with and without salt, while SA proteins promote particle aggregation only in the presence of salt that can weaken the electrostatic repulsion between anionic particles closely linked via SA that is smaller than IgG, which also agree well with experiments. Besides charge interactions, hydrophobic interactions between particles and proteins are also important especially at the high salt concentration, leading to the increased particle-protein contact area. These findings help explain experimental observations regarding that the effects of protein concentration and ionic strength on particle aggregation depend on different plasma proteins, which are interpreted by binding free energies, electrostatic, and hydrophobic interactions between particles and proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在血管内应用时,即,癌症治疗,纳米粒子(NPs)需要通过血液循环,维持血清蛋白相互作用,在它们穿透血管并到达目标位置以释放有效载荷药物之前。对于这样的交付过程,很难理解NP表面的形态变化并评估其对靶向递送的相关影响。在这里,我们使用具有不同表面修饰的二氧化硅NP来证明NP-血液蛋白相互作用的应用过程中NP的形态影响,血管内皮细胞渗透,随后的靶向递送和光动力疗法疗效以及形态学设计用于追求高载药量.与固体和介孔NP相比,我们发现尖刺管状NPs有助于保留NPs的防污特性(或“蛋白质电晕”的脱落),在体外和体内促进更好的内皮渗透和更少的破坏。这可能归因于尖状管状NP上的多个尖峰限制了NP-蛋白质相互作用区域并促进了NP-蛋白质空间位阻。在分子模拟中,我们确定NPs上的尖管状形态修饰增强了相互作用自由能,同时降低了氨基酸数量和随后与内皮细胞VE-钙粘蛋白接触的频率。因此,这些NP在减轻对VE-cadherin稳定性和内皮细胞完整性的损害方面具有优势。我们在这里的发现表明,我们可以利用表面形态修饰来设计尖刺的管状NP,为了提高NP递送效率,同时抑制血管内皮微环境的渗漏,在纳米医学在癌症治疗中的应用中与肿瘤迁移特别相关。
    Upon intravascular applications, i.e., cancer treatment, nanoparticles (NPs) are required to deliver through blood circulation, sustain serum protein interactions, before they penetrate the blood vessels and reach targeted sites for payload drug release. For a delivery process as such, it is elusive and difficult to comprehend the morphological change of NP surface and evaluate associated effects on its targeted delivery. Herein, we used silica NPs with different surface modifications to demonstrate the morphological impact of NPs during the application of the NP-blood protein interaction, vascular endothelial cell penetration, subsequent targeted delivery and photodynamic therapy efficacy, and pursue high drug-load NPs with surface designs. Compared to solid and mesoporous NPs, we found the spiky tubular NPs reserved the NPs\' antifouling properties (or shedding of \"protein corona\"), promoted better endothelial penetration and less destruction in vitro and in vivo. Such effects could be attributed to their spiky surface structures, which can limit the NP-protein interaction area and promote the NP-protein steric hindrance. Further in molecular simulations, we determined that the spiky tubular morphological modification on NPs enhanced the interaction free energy and lowered the amino acids number and the subsequent frequency in contacting with VE-cadherin of vascular endothelia. As a result, the spiky tubular NPs demonstrated its advantages in mitigating damages to VE-cadherin stability and endothelial cell integrity. Exploiting such spiky tubular surface modification, we can improve the NP delivery efficiency and prohibit the leakiness of vascular endothelia, helping address challenges faced by tumor migration in nanomedicine applications for cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    治疗的肺部递送(例如,生物制剂,抗生素,和化学疗法)封装在纳米颗粒中对于提供局部治疗的能力是理想的,绕过恶劣的胃肠环境。然而,对纳米颗粒在肺部给药后的生物学命运的有限理解阻碍了临床前研究转化为可行的治疗方法.一个关键的知识差距是肺生物分子冠对纳米颗粒功能的影响。在这次审查中,阐明了与肺部纳米颗粒递送相关的机遇和挑战,强调肺生物分子冠对靶细胞免疫识别和纳米颗粒内化的影响。最近的调查详述了蛋白质的影响,来自肺表面活性剂的脂质和粘蛋白对纳米颗粒行为的影响。此外,还讨论了在全身递送以生物分布到肺部时调节血浆蛋白冠的最新方法。提供了重新设计纳米颗粒结构以介导生物分子电晕形成的关键实例。这篇综述旨在提供对用于肺部递送的纳米颗粒的生物分子冠的全面了解。同时强调了它们对成功翻译新研究疗法的重要性。
    Pulmonary delivery of therapeutics (e.g., biologics, antibiotics, and chemotherapies) encapsulated in nanoparticles is desirable for the ability to provide a localised treatment, bypassing the harsh gastrointestinal environment. However, limited understanding of the biological fate of nanoparticles upon administration to the lungs hinders translation of pre-clinical investigations into viable therapies. A key knowledge gap is the impact of the pulmonary biomolecular corona on the functionality of nanoparticles. In this review, opportunities and challenges associated with pulmonary nanoparticle delivery are elucidated, highlighting the impact of the pulmonary biomolecular corona on immune recognition and nanoparticle internalisation in target cells. Recent investigations detailing the influence of proteins, lipids and mucin derived from pulmonary surfactants on nanoparticle behaviour are detailed. In addition, latest approaches in modulating plasma protein corona upon systemic delivery for biodistribution to the lungs are also discussed. Key examples of reengineering nanoparticle structure to mediate formation of biomolecule corona are provided. This review aims to provide a comprehensive understanding on biomolecular corona of nanoparticles for pulmonary delivery, while accentuating their significance for successful translation of newly investigated therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质电晕的形成使纳米医学具有独特的生物学特性,深刻地影响着他们的身体命运。非特异性纳米颗粒-蛋白质相互作用通常是高度异质的,这可能导致独特的生物学行为和体内命运的单个纳米颗粒,保持未充分开发。为了解决这个问题,我们已经建立了一种原位方法,可以在单个纳米颗粒水平上定量检查纳米颗粒-蛋白质的吸附。该方法集成了双重荧光定量技术,其中首先通过纳米流式细胞术单独分析纳米颗粒以检测来自吸附蛋白质的荧光信号。然后通过用酶标仪定量校准将获得的荧光强度翻译成蛋白质量。因此,这种方法能够分析纳米蛋白质相互作用的颗粒间异质性,以及血清中蛋白质吸附动力学和纳米颗粒聚集状态的原位监测,全面了解纳米生物相互作用的预处理,并预测纳米药物的体内命运。
    The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号