%0 Journal Article %T Brain-targeted drug delivery by in vivo functionalized liposome with stable D-peptide ligand. %A Yang Y %A Chu Y %A Li C %A Fan L %A Lu H %A Zhan C %A Zhang Z %J J Control Release %V 373 %N 0 %D 2024 Jul 18 %M 38977135 %F 11.467 %R 10.1016/j.jconrel.2024.07.014 %X Brain-targeted drug delivery poses a great challenge due to the blood-brain barrier (BBB). In a previous study, we have developed a peptide-modified stealth liposome (SP-sLip) to enhance BBB penetration via the adsorption of apolipoproteins in plasma. SP is an 11-amino acid peptide derived from 25 to 35 of the Amyloid β peptide (Aβ1-42), which is a nature ligand of apolipoproteins. Although freshly prepared SP-sLip exhibited efficient brain targeting performance, it occured self-aggregation and instability in storage. In this study, we developed a D-peptide ligand according to the reverse sequence of SP with D-amino acids, known as DSP, to improve the stability in storage. Notably, DSP exhibited a reduced tendency for self-aggregation and improved stability in comparison to the SP peptide. Furthermore, compared to SP-sLip, DSP-modified sLip (DSP-sLip) demonstrated enhanced stability (>2 weeks), prolonged blood circulation (AUC increased 44.4%), reduced liver and spleen accumulation (reduced by 2.23 times and 1.86 times) with comparable brain-targeting efficiency. Similar to SP-sLip, DSP-sLip selectively adsorbed apolipoprotein A1, E, and J in the blood to form functionalized protein corona, thus crossing BBB via apolipoprotein receptor-mediated transcytosis. These findings underscored the importance of ligand stability in the in vitro and in vivo performance of brain-targeted liposomes, therefore paving the way for the design and optimization of efficient and stable nanocarriers.