MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MTT,3 - (4, 5 - 二甲基噻唑 - 2 - 基) - 2, 5 - 二苯基四唑溴化物
  • 文章类型: Journal Article
    尽管几种人工纳米疗法已被批准用于转移性乳腺癌的实际治疗,他们低效的治疗结果,严重的不良影响,大规模生产的高成本仍然是关键的挑战。在这里,我们开发了一种替代策略,通过使用来自茶花的天然纳米载体(TFEN)特异性触发乳腺肿瘤细胞凋亡并抑制其肺转移.这些纳米载体具有理想的粒径(131nm),外泌体样形态,和负zeta电位。此外,TFEN被发现含有大量的多酚,黄酮类化合物,功能蛋白,和脂质。细胞实验表明,由于刺激活性氧(ROS)扩增,TFEN对癌细胞显示出强细胞毒性。细胞内ROS数量的增加不仅可以触发线粒体损伤,但也阻止细胞周期,导致体外抗增殖,反移民,和抗乳腺癌细胞侵袭活性。进一步的小鼠研究表明,静脉内(i.v.)注射或口服给药后的TFEN可以在乳腺肿瘤和肺转移部位积聚,抑制乳腺癌的生长和转移,并调节肠道微生物群。这项研究为通过静脉内和口服途径抑制乳腺癌及其肺转移的天然外泌体样纳米平台的绿色生产带来了新的见解。
    Although several artificial nanotherapeutics have been approved for practical treatment of metastatic breast cancer, their inefficient therapeutic outcomes, serious adverse effects, and high cost of mass production remain crucial challenges. Herein, we developed an alternative strategy to specifically trigger apoptosis of breast tumors and inhibit their lung metastasis by using natural nanovehicles from tea flowers (TFENs). These nanovehicles had desirable particle sizes (131 nm), exosome-like morphology, and negative zeta potentials. Furthermore, TFENs were found to contain large amounts of polyphenols, flavonoids, functional proteins, and lipids. Cell experiments revealed that TFENs showed strong cytotoxicities against cancer cells due to the stimulation of reactive oxygen species (ROS) amplification. The increased intracellular ROS amounts could not only trigger mitochondrial damage, but also arrest cell cycle, resulting in the in vitro anti-proliferation, anti-migration, and anti-invasion activities against breast cancer cells. Further mice investigations demonstrated that TFENs after intravenous (i.v.) injection or oral administration could accumulate in breast tumors and lung metastatic sites, inhibit the growth and metastasis of breast cancer, and modulate gut microbiota. This study brings new insights to the green production of natural exosome-like nanoplatform for the inhibition of breast cancer and its lung metastasis via i.v. and oral routes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Drug transportation is impeded by various barriers in the hypoxic solid tumor, resulting in compromised anticancer efficacy. Herein, a solid lipid monostearin (MS)-coated CaO2/MnO2 nanocarrier was designed to optimize doxorubicin (DOX) transportation comprehensively for chemotherapy enhancement. The MS shell of nanoparticles could be destroyed selectively by highly-expressed lipase within cancer cells, exposing water-sensitive cores to release DOX and produce O2. After the cancer cell death, the core-exposed nanoparticles could be further liberated and continue to react with water in the tumor extracellular matrix (ECM) and thoroughly release O2 and DOX, which exhibited cytotoxicity to neighboring cells. Small DOX molecules could readily diffuse through ECM, in which the collagen deposition was decreased by O2-mediated hypoxia-inducible factor-1 inhibition, leading to synergistically improved drug penetration. Concurrently, DOX-efflux-associated P-glycoprotein was also inhibited by O2, prolonging drug retention in cancer cells. Overall, the DOX transporting processes from nanoparticles to deep tumor cells including drug release, penetration, and retention were optimized comprehensively, which significantly boosted antitumor benefits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤术后复发是导致治疗失败的主要原因。然而,复发的初始阶段不容易发现,后期很难治愈。为了提高术后患者的生活质量,开发了一种有效的协同免疫疗法,以实现对手术后肿瘤复发的早期诊断和治疗,同时。在本文中,制备了两种基于金纳米棒(AuNRs)平台的治疗剂。一种试剂中的AuNRs和量子点(QDs)用于检测癌胚抗原(CEA),使用荧光共振能量转移(FRET)技术来指示原位复发的发生,而另一种药物中的AuNRs用于光热治疗(PTT),与抗PDL1介导的免疫治疗一起缓解肿瘤转移的过程。一系列试验表明,这种协同免疫疗法可以诱导肿瘤细胞死亡和CD3+/CD4+T淋巴细胞和CD3+/CD8+T淋巴细胞的产生增加。此外,与单一免疫疗法相比,协同免疫疗法分泌的免疫因子(IL-2,IL-6和IFN-γ)更多.这种协同的免疫治疗策略可以同时用于肿瘤术后复发的诊断和治疗。为基础和临床研究提供了新的视角。
    Tumor recurrence after surgery is the main cause of treatment failure. However, the initial stage of recurrence is not easy to detect, and it is difficult to cure in the late stage. In order to improve the life quality of postoperative patients, an efficient synergistic immunotherapy was developed to achieve early diagnosis and treatment of post-surgical tumor recurrence, simultaneously. In this paper, two kinds of theranostic agents based on gold nanorods (AuNRs) platform were prepared. AuNRs and quantum dots (QDs) in one agent was used for the detection of carcinoembryonic antigen (CEA), using fluorescence resonance energy transfer (FRET) technology to indicate the occurrence of in situ recurrence, while AuNRs in the other agent was used for photothermal therapy (PTT), together with anti-PDL1 mediated immunotherapy to alleviate the process of tumor metastasis. A series of assays indicated that this synergistic immunotherapy could induce tumor cell death and the increased generation of CD3+/CD4+ T-lymphocytes and CD3+/CD8+ T-lymphocytes. Besides, more immune factors (IL-2, IL-6, and IFN-γ) produced by synergistic immunotherapy were secreted than mono-immunotherapy. This cooperative immunotherapy strategy could be utilized for diagnosis and treatment of postoperative tumor recurrence at the same time, providing a new perspective for basic and clinical research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cassiae semen are dried and ripe seeds of Cassia obtusifolia L. or Cassia tora L. (Fabaceae) and have been made into roasted tea or used as a traditional medicine in Asian countries. However, it was reported to result in liver and renal toxicity. The components of Cassiae semen that induce hepatotoxicity or nephrotoxicity remain unknown. In the present study, we evaluate the potential toxicity of 26 newly isolated compounds from Cassiae semen using quantitative structure-activity relationship (QSAR) methods and co-culture of hepatic and renal cell approaches, and we aim to illustrate the relationship between the structural characteristics and cytotoxicity by general linear models (GLMs). Both the QSAR models and co-culture of hepatic and renal cell systems predicted that 6 compounds were potentially hepatotoxic, 10 compounds were potentially nephrotoxic, and specific anthraquinones and anthraquinone-glucosides were potential toxicants in Cassiae semen. Specific groups such as -OH and -OCH3 at the R1, R2, R3, and R7 positions influenced the cytotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    颗粒物(PM)导致空气污染,主要来自不受管制的工业排放和季节性自然粉尘排放。岩藻黄质(Fx)是一种来自棕色大型藻类的海洋天然色素,已被证明对健康具有各种有益作用。然而,尚未评估Fx对PM诱导的细胞和动物毒性的影响。在这项研究中,我们研究了羊尾藻Fx-richfraction(FxRF)对PM-介导的炎症反应的抗炎潜力。通过快速分辨液相色谱质谱法分析FxRF组合物。鉴定了Fx和其他主要颜料。FxRF减弱了炎症成分的产生,包括前列腺素E2(PGE2),环氧合酶-2,白细胞介素(IL)-1β,和来自PM暴露的HaCaT角质形成细胞的IL-6。PM暴露也降低了一氧化氮(NO)的水平,肿瘤坏死因子-α,诱导型一氧化氮合酶(iNOS),和PGE2在暴露于PM的RAW264.7巨噬细胞中。此外,来自PM暴露的HaCaT细胞的培养基诱导NO的上调,iNOS,RAW264.7巨噬细胞中的PGE2和促炎性细胞因子。FxRF还显著降低了与炎症反应有关的因子的表达水平,如NO,活性氧,和细胞死亡,在PM暴露的斑马鱼胚胎中。这些结果证明了FxRF在体外和斑马鱼模型中对PM诱导的炎症的潜在保护作用。
    Particulate matter (PM) contributes to air pollution and primarily originates from unregulated industrial emissions and seasonal natural dust emissions. Fucoxanthin (Fx) is a marine natural pigment from brown macroalgae that has been shown to have various beneficial effects on health. However, the effects of Fx on PM-induced toxicities in cells and animals have not been assessed. In this study, we investigated the anti-inflammatory potential of the Fx-rich fraction (FxRF) of Sargassum fusiformis against PM-mediated inflammatory responses. The FxRF composition was analyzed by rapid-resolution liquid chromatography mass spectrometry. Fx and other main pigments were identified. FxRF attenuated the production of inflammatory components, including prostaglandin E2 (PGE2), cyclooxygenase-2, interleukin (IL)-1β, and IL-6 from PM-exposed HaCaT keratinocytes. PM exposure also reduced the levels of nitric oxide (NO), tumor necrosis factor-α, inducible nitric oxide synthase (iNOS), and PGE2 in PM-exposed RAW264.7 macrophages. Additionally, the culture medium from PM-exposed HaCaT cells induced upregulation of NO, iNOS, PGE2, and pro-inflammatory cytokines in RAW264.7 macrophages. FxRF also significantly decreased the expression levels of factors involved in inflammatory responses, such as NO, reactive oxygen species, and cell death, in PM-exposed zebrafish embryos. These results demonstrated the potential protective effects of FxRF against PM-induced inflammation both in vitro and in a zebrafish model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The combination of paclitaxel (PTX) and doxorubicin (DOX) has been widely used in the clinic. However, it remains unsatisfied due to the generation of severe toxicity. Previously, we have successfully synthesized a prodrug PTX-S-DOX (PSD). The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX. Thus, we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation. Due to the fact that copper ions (Cu2+) could coordinate with the anthracene nucleus of DOX, we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+ gradient. Hence, we designed a remote loading liposomal formulation of PSD (PSD LPs) for combination chemotherapy. The prepared PSD LPs displayed extended blood circulation, improved tumor accumulation, and more significant anti-tumor efficacy compared with PSD NPs. Furthermore, PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil, indicating better safety. Therefore, this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    It is critical to regulate the senescence-associated secretory phenotype (SASP) due to its effect on promoting malignant phenotypes and limiting the efficiency of cancer therapy. In this study, we demonstrated that marchantin M (Mar-M, a naturally occurring bisbibenzyl) suppressed pro-inflammatory SASP components which were elevated in chemotherapy-resistant cells. Mar-M treatment attenuated the pro-tumorigenic effects of SASP and enhanced survival in drug-resistant mouse models. No toxicity was detected on normal fibroblast cells or in animals following this treatment. Inactivation of transcription factor EB (TFEB) and nuclear factor-κB (NF-κB) by Mar-M significantly accounted for its suppression on the components of SASP. Furthermore, inhibition of SASP by Mar-M contributed to a synergistic effect during co-treatment with doxorubicin to lower toxicity and enhance antitumor efficacy. Thus, chemotherapy-driven pro-inflammatory activity, seen to contribute to drug-resistance, is an important target for Mar-M. By decreasing SASP, Mar-M may be a potential approach to overcome tumor malignancy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于抗肿瘤药物的影响,哺乳动物细胞中的核苷酸库发生变化,这可能有助于评估药物作用和理解药物作用机制。在这项研究中,离子对RP-HPLC方法用于一种简单的,敏感且同时测定用抗生素抗肿瘤药物处理的哺乳动物细胞中12个核苷酸的水平(柔红霉素,表柔比星和放线菌素D)。通过使用这种靶向代谢组学方法来寻找潜在的生物标志物,UTP和ATP被证实是最合适的生物标志物。此外,提出了一种整体统计方法,以建立一个模型,可以区分4种具有不同作用机制的药物。可以通过评估具有不同作用机制的药物来进一步验证该模型。这种靶向代谢组学研究可能为预测抗肿瘤药物的作用机制提供了一种新的方法。
    Nucleotide pools in mammalian cells change due to the influence of antitumor drugs, which may help in evaluating the drug effect and understanding the mechanism of drug action. In this study, an ion-pair RP-HPLC method was used for a simple, sensitive and simultaneous determination of the levels of 12 nucleotides in mammalian cells treated with antibiotic antitumor drugs (daunorubicin, epirubicin and dactinomycin D). Through the use of this targeted metabolomics approach to find potential biomarkers, UTP and ATP were verified to be the most appropriate biomarkers. Moreover, a holistic statistical approach was put forward to develop a model which could distinguish 4 categories of drugs with different mechanisms of action. This model can be further validated by evaluating drugs with different mechanisms of action. This targeted metabolomics study may provide a novel approach to predict the mechanism of action of antitumor drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    双氢青蒿素(DHA),青蒿素衍生物的活性代谢产物,是最引人注目的抗疟疾药物,对人类几乎没有毒性。最近的研究表明,DHA可以有效抑制癌细胞的生长。在本研究中,我们旨在阐明DHA抑制负载铁的人髓系白血病K562细胞生长的潜在机制。线粒体是自噬和凋亡的重要调节因子,线粒体功能障碍的触发因素之一是活性氧(ROS)的产生。我们发现DHA诱导的白血病K562细胞自噬,其细胞内细胞器主要是线粒体,是ROS依赖的。这些细胞的自噬随后是LC3-II蛋白表达和caspase-3激活。此外,我们证明DHA对白血病K562细胞增殖的抑制作用也依赖于铁。这种抑制包括TfR表达的下调和在G2/M期诱导K562细胞生长停滞。
    Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    TERE1/UBIAD1与SCCD(Schnyder晶状体角膜营养不良)和多种人类癌症有关。到目前为止,TERE1/UBIAD1在肿瘤发生中的分子机制尚不清楚。这里,测量了经病理证实的中国TCC(移行细胞癌)样品中hTERT和TERE1/UBIAD1的表达水平。发现降低的TERE1/UBIAD1表达与增加的hTERT表达和Ras-MAPK信号传导的激活密切相关。化学修饰的TERE1siRNA寡核苷酸用于敲低人L02细胞中的TERE1表达。用TERE1siRNA寡核苷酸转染的细胞经历了显著的细胞增殖。当测量hTERT表达和ERK磷酸化水平时,发现它们在上述转染细胞中都增加,提示Ras-MAPK信号的激活。将MEK抑制剂U0126添加到上述转染的L02细胞中抑制ERK磷酸化和hTERT表达。我们的结果是初步证明TERE1的下调激活Ras-MAPK信号并诱导随后的细胞增殖。TERE1可能是Ras-MAPK信号的一个新的负调节因子,在多种人类癌症的细胞增殖中起着关键作用。
    TERE1/UBIAD1 is involved in SCCD (Schnyder crystalline corneal dystrophy) and multiple human cancers. So far, the molecular mechanism of TERE1/UBIAD1 in tumourigenesis is unclear. Here, the expression levels of hTERT and TERE1/UBIAD1 in pathologically proven Chinese TCC (transitional cell carcinoma) samples were measured. It was found that decreased TERE1/UBIAD1 expression is closely related to both an increased hTERT expression and activation of Ras-MAPK signalling. Chemically modified TERE1 siRNA oligos were used to knock down TERE1 expression in human L02 cells. Cells transfected with TERE1 siRNA oligos underwent significant cell proliferation. When the levels of hTERT expression and ERK phosphorylation were measured, it was found that both of them increased in the above transfected cells, suggesting the activation of Ras-MAPK signalling. Addition of the MEK inhibitor U0126 into the transfected L02 cells described above inhibited ERK phosphorylation and hTERT expression. Our result is the initial demonstration that down-regulation of TERE1 activates Ras-MAPK signalling and induces subsequent cell proliferation. TERE1 might be a new negative regulator of Ras-MAPK signalling, which plays a pivotal role in the cell proliferation of multiple human cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号