Intramolecular Transferases

分子内转移酶
  • 文章类型: English Abstract
    熊果酸由于其独特的药理活性和宝贵的市场价值,近年来逐渐受到人们的关注。目前,熊果酸主要从枇杷叶中提取,但植物提取法收率低、成本高,化学合成并不容易获得,因此,生物合成方法为熊果酸提供了新的来源。α-Amyrin是合成熊果酸的主要前体,其产量与熊果酸产量呈正相关。氧化角鲨烯环化酶(OSC)属于多基因家族,可以催化共同的前体2,3-氧化角鲨烯生成不同类型的三萜主链,在三萜类化合物的合成中起着决定性的作用。然而,在药用植物中催化α-amyrin合成的关键基因报道较少,催化产物中α-Amyrin的产率和比例一直是研究的重点。在这项研究中,ItOSC2,MdOSC1,AaOSC2和CrAS,四种能够催化从2,3-氧化角鲨烯生产α-amyrin的酶,是从Iristectorum克隆的,家蝇,黄花蒿和长春花,进行序列比对和系统发育树分析,并作为质粒转化为酿酒酵母。发酵7天后,α-amyrin的产量和比例,测定β-淀粉肽和麦角甾醇。最后,筛选出催化α-amyrin生成能力最好的AaOSC2,为后期构建高产α-amyrin和熊果酸的工程酵母菌株提供了关键基因元件。
    Ursolic acid has gradually attracted much attention due to its unique pharmacological activities and valuable market value in recent years. Currently, ursolic acid is mostly extracted from loquat leaves, but the plant extraction method has low yield and high cost, and chemical synthesis is not readily available, so the biosynthesis method provides a new source for ursolic acid. α-amyrin acts as the main precursor for the synthesis of ursolic acid, and its yield is positively correlated with ursolic acid yield. Oxidosqualene cyclase(OSC) belongs to a multigene family which can catalyze the common precursor 2,3-oxidosqualene to generate different types of triterpene backbones, and plays a decisive role in the synthesis of triterpenoids. However, there are fewer reported key genes catalyzing the synthesis of α-amyrin in medicinal plants, and the yield and proportion of α-amyrin in the catalyzed products have always been a focus of research. In this study, ItOSC2, MdOSC1, AaOSC2 and CrAS, four enzymes capable of catalyzing the production of α-amyrin from 2,3-oxidosqualene, were cloned from Iris tectorum, Malus domestica, Artemisia annua and Catharanthus roseus, subject to sequence alignment and phylogenetic tree analyses, and transformed into Saccharomyces cerevisiae as plasmids. After 7 days of fermentation, the yield and proportions of α-amyrin, β-amyrin and ergosterol were measured. Finally, AaOSC2 with the best ability to catalyze the generation of α-amyrin was filtered out, providing a key gene element for the later construction of engineered yeast strains with high production of α-amyrin and ursolic acid.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    艾蒿是一种传统的药食植物,产生各种具有药理活性的三萜类化合物,比如反病毒,抗癌,和抗氧化剂。A.argyi的2,3-氧化角鲨烯环化酶家族提供了对三萜途径的新颖见解,这可能有助于其组织提取物的药用价值。然而,艾蒿中活性三萜的生物合成仍不确定。在这项研究中,首先从A.argyi中分离并鉴定了四个推定的OSC(2,3-氧化角鲨烯环化酶)基因(AaOSC1-4)。通过酵母异源表达系统,三个AaOSCs被表征为生物合成不同的三萜类化合物,包括环阿烯醇,β-amyrin,(3S,13R)-malabarica-14(27),17,21-三烯-3β-醇,和Dammara-20,24-dien-3β-ol。AaOSC1是一种多功能的dammara-20,24-dien-3β-ol合酶,产生了8种不同的三萜类化合物,包括三环,和四环产品。AaOSC2和AaOSC3是环阿替恩醇,和β-淀粉酶,分别。因此,这些发现提供了一个更深入的了解三萜的生物合成途径。
    Artemisia argyi is a traditional medicinal and edible plant, generating various triterpenoids with pharmacological activities, such as anti-virus, anti-cancer, and anti-oxidant. The 2,3-oxidosqualene cyclase family of A. argyi offers novel insights into the triterpenoid pathway, which might contribute to the medicinal value of its tissue extracts. Nevertheless, the biosynthesis of active triterpenoids in Artemisia argyi is still uncertain. In this study, four putative OSC (2,3-oxidosqualene cyclase) genes (AaOSC1-4) were first isolated and identified from A. argyi. Through the yeast heterologous expression system, three AaOSCs were characterized for the biosynthesis of diverse triterpenoids including cycloartenol, β-amyrin, (3S,13R)-malabarica-14(27),17,21-trien-3β-ol, and dammara-20,24-dien-3β-ol. AaOSC1 was a multifunctional dammara-20,24-dien-3β-ol synthase, which yielded 8 different triterpenoids, including tricyclic, and tetracyclic products. AaOSC2 and AaOSC3 were cycloartenol, and β-amyrin synthases, respectively. As a result, these findings provide a deeper understanding of the biosynthesis pathway of triterpenes in A. argyi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Wolfaporiacocos是在中国使用的药用蘑菇。它生物合成胞嘧啶酸(PA),与治疗相关的主要治疗性三萜。如今,未知的PA生物合成导致难以增加其在W.cocos中的含量。在这里,我们报告测序,装配,W.cocos的基因组和几个转录组的表征。序列挖掘确定了编码羊毛甾醇合酶的候选基因,甾醇O-酰基转移酶,和甾醇C-24甲基转移酶可能参与了从羊毛甾醇到PA的步骤。基因簇分析确定了四个CYP450cDNA可能参与PA的生物合成,即WcCYP64-1,WcCYP64-2,WcCYP52和WcCYP_FUM15,它们在菌丝体中同时经历过表达和沉默。WcCYP64-1,WcCYP52和WcCYP_FUM15的过表达均增加了PA的含量,16α-羟基三甲酚酸,土利酸,和纤维素酸,而每个基因的沉默显著或轻微降低了这四种化合物的含量,表明它们参与PA的生物合成。此外,不同温度影响这些基因的表达和PA的形成。相比之下,WcCYP64-2的过表达和沉默不会改变这些化合物的形成。一起来看,这些发现确定了PA用于代谢工程的生物合成途径中更多的潜在步骤。
    Wolfiporia cocos is a medicinal mushroom used in China. It biosynthesizes pachymic acid (PA), a main therapeutic triterpene associated with therapies. Nowadays, the unknown PA biosynthesis leads to difficulties in increasing its content in W. cocos. Herein, we report sequencing, assembling, and characterization of the genome and several transcriptomes of W. cocos. Sequence mining determined candidate genes that encode lanosterol synthase, sterol O-acyltransferase, and sterol C-24 methyltransferase likely involved in the steps from lanosterol to PA. Gene cluster analysis identified four CYP450 cDNAs likely involved in the biosynthesis of PA, namely WcCYP64-1, WcCYP64-2, WcCYP52, and WcCYP_FUM15, which were subjected to both overexpression and silencing in mycelia. The overexpression of each of WcCYP64-1, WcCYP52 and WcCYP_FUM15 increased the content of PA, 16α-hydroxytrametenolic acid, eburicoic acid, and tumulosic acid, while the silencing of each gene either significantly or slightly decreased the contents of these four compounds, indicating their involvement in the PA biosynthesis. In addition, different temperatures affected the expression of these genes and the formation of PA. By contrast, the overexpression and silencing of WcCYP64-2 did not alter the formation of these compounds. Taken together, these findings determine more potential steps in the biosynthetic pathway of PA for metabolic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:小分子葡萄糖基转移酶功能丧失突变体ugt76b1表现出SID2-或NPR1依赖性和独立的植物免疫力增强方面,因此,SID2和NPR1独立需要FMO1。小分子葡萄糖基转移酶UGT76B1使水杨酸(SA)失活,异亮氨酸(ILA),和N-羟基羧酸(NHP)。ugt76b1丧失功能的植物表现出增强的防御状态。因此,我们感兴趣的是UGT76B1基因如何整合到防御途径中,以及是否所有影响都取决于SA和NHP.我们通过ugt76b1的转录组分析研究UGT76B1的整合。通过UGT76B1丢失而改变的转录本与公共转录组数据的比较揭示了两种SA反应,同工酶合成酶1/水杨酸诱导缺失2(ICS1/SID2)-和PR基因1(NPR1)依赖性的非表达,与UGT76B1在糖基化SA中的作用一致,和SA-无响应,SID2/NPR1独立基因。我们还发现UGT76B1对一组显示非SA反应性和独立于SID2/NPR1的感染调节的基因产生影响。ugt76b1对丁香假单胞菌的抗性增强部分独立于SID2和NPR1。相比之下,ugt76b1激活的电阻完全取决于FMO1编码NHP合成的黄素依赖性单氧酶1)。此外,FMO1在ugt76b1诱导的SID2-和NPR1-非依赖性病原体应答基因中排名第一,表明FMO1决定了ugt76b1的SID2-和NPR1-非依赖性效应。此外,遗传学研究表明,FMO1,增强疾病易感性1(EDS1),SA-JA串扰和ugt76b1的衰老发展需要SID2和NPR1,这表明EDS1和FMO1具有类似的作用,例如应激诱导的SA生物合成(SID2)或关键的SA信号传导调节剂NPR1。因此,UGT76B1影响SID2/NPR1依赖和独立的植物免疫,SID2/NPR1的独立性依赖于FMO1及其产品NHP,UGT76B1的另一种底物。
    CONCLUSIONS: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Let-7是最早被发现的microRNAs(miRNAs)之一,其表达在发育过程中促进分化,并在各种癌症中作为肿瘤抑制因子发挥作用。let-7miRNA的成熟过程受到多种RNA结合蛋白的严格调控。例如,LIN28与let-7家族前体的末端环结合并阻断它们加工成成熟miRNA。Trim25促进由LIN28/TUT4修饰的pre-let-7的尿苷化介导的降解。最近,据报道,人假尿苷合酶TruB1通过直接与pri-let-7结合并招募Drosha-DGCR8微处理器来促进let-7成熟。通过生化分析和结构研究,我们显示人TruB1在核苷酸31-41处特异性结合pri-let-7a1的末端环,该末端环折叠为小的茎环结构。尽管TruB1以类似于大肠杆菌TruB与tRNA相互作用的方式识别pri-let-7a1的末端环,人类和其他高等真核生物中保守的KRKK基序增加了额外的结合界面,并通过静电相互作用增强了TruB1对pri-let-7a1的识别。这些发现揭示了TruB1-pri-let-7相互作用的结构基础,这可能有助于阐明TruB1在let-7生物发生中的精确作用。
    Let-7 was one of the first microRNAs (miRNAs) to be discovered and its expression promotes differentiation during development and function as tumor suppressors in various cancers. The maturation process of let-7 miRNA is tightly regulated by multiple RNA-binding proteins. For example, LIN28 binds to the terminal loops of the precursors of let-7 family and block their processing into mature miRNAs. Trim25 promotes the uridylation-mediated degradation of pre-let-7 modified by LIN28/TUT4. Recently, human pseudouridine synthase TruB1 has been reported to facilitate let-7 maturation by directly binding to pri-let-7 and recruiting Drosha-DGCR8 microprocessor. Through biochemical assay and structural investigation, we show that human TruB1 binds specifically the terminal loop of pri-let-7a1 at nucleotides 31-41, which folds as a small stem-loop architecture. Although TruB1 recognizes the terminal loop of pri-let-7a1 in a way similar to how E. coli TruB interacts with tRNA, a conserved KRKK motif in human and other higher eukaryotes adds an extra binding interface and strengthens the recognition of TruB1 for pri-let-7a1 through electrostatic interactions. These findings reveal the structural basis of TruB1-pri-let-7 interaction which may assists the elucidation of precise role of TruB1 in biogenesis of let-7.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异分支酸合酶(ICS)蛋白是水杨酸(SA)合成的重要调节因子,据报道,它可以调节植物对生物和非生物胁迫的抗性。由油菜疟原虫引起的丛枝病是一种常见病,威胁着油菜的产量和品质。外源施用水杨酸降低了油菜根茎病的发生率。然而,ICS基因家族在欧洲油菜及其二倍体祖细胞中的潜在重要性尚不清楚.这里,我们在同种四倍体油菜中鉴定了16、9和10个ICS基因,二倍体祖先甘蓝型油菜和甘蓝,分别。这些ICS基因分为三个亚家族(I-III),同样的亚家族成员表现出相对保守的基因结构,图案,和蛋白质结构域。此外,在BnaICS基因中观察到许多激素反应和应激相关的启动子顺式作用元件。外源施用SA延缓了根瘤菌的生长,BnaICS基因的表达与对照组相比有显著差异。蛋白质-蛋白质相互作用分析确定了58种蛋白质参与响应于甘蓝型油菜中的油菜油菜的ICS调节。这些结果为了解油菜的抗性机制提供了新的线索。
    The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    β-Amyrin合酶(bAS)是具有代表性的植物氧化角鲨烯环化酶(OSC),和以前的研究已经确定了许多功能残基和突变体,可以改变其催化活性。然而,活性位点结构调节催化活性的调节机制尚不清楚。在这项研究中,我们通过分子动力学模拟和定点诱变实验研究了关键残基的功能及其对甘草β-淀粉合成酶(GgbAS)催化活性的调控作用。我们确定了位于两个活性位点区域的可塑性残基,并探索了这些残基与四环/五环中间体之间的相互作用。根据计算和实验结果,我们进一步将这些可塑性残基分为三种类型:效应子,调节器,和载体残留物,根据它们在催化过程中的作用。这项研究为GgbAS的催化机理和活性位点可塑性提供了有价值的见解,为其他OSC酶的合理酶工程提供了重要参考。
    β-Amyrin synthase (bAS) is a representative plant oxidosqualene cyclase (OSC), and previous studies have identified many functional residues and mutants that can alter its catalytic activity. However, the regulatory mechanism of the active site architecture for adjusting the catalytic activity remains unclear. In this study, we investigate the function of key residues and their regulatory effects on the catalytic activity of Glycyrrhiza glabra β-amyrin synthase (GgbAS) through molecular dynamics simulations and site-directed mutagenesis experiments. We identified the plasticity residues located in two active site regions and explored the interactions between these residues and tetracyclic/pentacyclic intermediates. Based on computational and experimental results, we further categorize these plasticity residues into three types: effector, adjuster, and supporter residues, according to their functions in the catalytic process. This study provides valuable insights into the catalytic mechanism and active site plasticity of GgbAS, offering important references for the rational enzyme engineering of other OSC enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自山茶属物种的三萜类包括具有巨大治疗潜力的多种生物活性化合物。然而,茶树(茶树)中的三萜生物合成仍然难以捉摸。这里,我们从茶基因组中鉴定了八个推定的2,3-氧化角鲨烯环化酶(OSC)基因(CsOSC1-8),并通过在酵母和烟草中的异源表达以及在茶树中的瞬时过表达来表征五个基因的功能。CsOSC1被发现是一种β-淀粉酶合成酶,而CsOSC4、5和6表现出多功能α-amyrin合酶活性。分子对接和定点诱变表明,CsOSC6M259T/W260L双突变体产量>40%羽扇豆醇,而单独的CsOSC1W259L单突变体足以生产羽扇豆醇。CsOSC5中的V732F突变改变了产物从friedelin到taraxasterol和Φ-taraxasterol的形成。环阿替烯醇合酶CsOSC8中的L254M突变增强了催化活性。我们的发现揭示了控制茶树中三萜多样性的分子基础,并为OSC工程提供了潜在的途径。
    Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a β-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三萜类化合物是一类具有广泛生物活性的特殊代谢产物。然而,自然界中一些次要三萜类化合物的可用性有限,这阻碍了我们对它们药理潜力的理解。为了克服这个限制,酵母中三萜类化合物的异源生物合成已成为获得这些次要化合物的有前途且省时的生产平台。在这项研究中,我们分析了Enkianthus的转录组数据,以鉴定一个氧化角鲨烯环化酶(EcOSC)基因和四个CYP716s。通过这些基因在酵母中的异源表达,九种天然五环三萜类化合物,包括由一种多功能OSC产生的三种骨架产物(1-3)和由CYP716s催化的六种次要氧化产物(4-9),已获得。值得注意的是,我们发现CYP716E60可以氧化ursane型和齐墩烷型三萜类化合物产生6β-OH衍生物,标志着乌苏烷型三萜类化合物中首次确认的C-6β羟基化。化合物9对NO产生显示中等抑制活性,并在转录和蛋白质水平上剂量依赖性地减少IL-1β和IL-6的产生。化合物1、2、8和9表现出中等的肝保护活性,在10μM时HepG2细胞的存活率为61%至68%。
    Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6β-OH derivatives, marking the first confirmed C-6β hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1β and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 μM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自Neoalsomitraintegrifoliola的六种氧化角鲨烯环化酶(NiOSC1-NiOSC6)被表征为多种三萜支架的生物合成,包括来自2,3-氧化角鲨烯的四环和五环三萜(1)和来自2,3:22,23-二氧化角鲨烯(2)的氧环三萜。NiOSC1在生产天然稀有(20R)的氧杂环三萜差向异构体方面表现出很高的效率。诱变结果显示,与野生型相比,NiOSC1-F731G突变体显著增加了(20R)-差向异构体的产量。同源性建模和分子对接阐明了环氧化物添加步骤中(20R)构型的起源。
    Six oxidosqualene cyclases (NiOSC1-NiOSC6) from Neoalsomitra integrifoliola were characterized for the biosynthesis of diverse triterpene scaffolds, including tetracyclic and pentacyclic triterpenes from the 2,3-oxidosqualene (1) and oxacyclic triterpenes from the 2,3:22,23-dioxidosqualene (2). NiOSC1 showed high efficiency in the production of naturally rare (20R)-epimers of oxacyclic triterpenes. Mutagenesis results revealed that the NiOSC1-F731G mutant significantly increased the yields of (20R)-epimers compared to the wild type. Homology modeling and molecular docking elucidated the origin of the (20R)-configuration in the epoxide addition step.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号