Intramolecular Transferases

分子内转移酶
  • 文章类型: Journal Article
    伪尿苷(Φ),尿苷的异构体,普遍存在于RNA中,包括tRNA,rRNA,和mRNA。人假尿苷合酶3(PUS3)催化tRNA中位置38/39的假尿苷化。然而,它识别其RNA靶标并实现位点特异性的分子机制仍然难以捉摸。这里,我们确定了apo形式并与三个tRNA结合的PUS3的单颗粒冷冻EM结构,显示对称PUS3同二聚体如何识别tRNA并将靶尿苷定位在其活性位点附近。结构指导和患者来源的突变验证了我们在互补生化测定中的结构发现。此外,我们在HEK293细胞中删除了PUS1和PUS3,并通过Pseudo-seq定位了转录组范围的Φ位点。尽管在tRNA和mRNA中可以检测到PUS1依赖性位点,我们没有发现人类PUS3修饰mRNA的证据.我们的工作为人类PUS3介导的tRNA修饰提供了分子基础,并解释了其tRNA修饰活性如何与智力障碍有关。
    Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    萜烯合成处于现代合成化学的最前沿,代表着化学家工具箱中最先进的技术。尽管如此,这些努力与当前天然循环积木的可用性有着内在的联系。解决这一限制,大量无偏线性萜烯的立体控制环化成为一种有价值的工具,用化学催化剂仍然难以实现。在这项研究中,我们展示了角鲨烯-hopene环化酶(SHCs)在头对尾融合萜烯的化学酶法合成中的显着能力。通过结合工程SHCs和实际的反应设置,我们产生10个手性支架,>99%ee和de,达到decram规模。我们的机械见解表明,萜烯的环糊精封装如何影响膜结合酶的性能。此外,我们使用跨学科合成方法将手性模板转化为有价值的(mero)-萜烯,包括通过协同碘/脂肪酶催化促进的烯醇醚的催化环收缩。
    Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist\'s toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Wolfaporiacocos是在中国使用的药用蘑菇。它生物合成胞嘧啶酸(PA),与治疗相关的主要治疗性三萜。如今,未知的PA生物合成导致难以增加其在W.cocos中的含量。在这里,我们报告测序,装配,W.cocos的基因组和几个转录组的表征。序列挖掘确定了编码羊毛甾醇合酶的候选基因,甾醇O-酰基转移酶,和甾醇C-24甲基转移酶可能参与了从羊毛甾醇到PA的步骤。基因簇分析确定了四个CYP450cDNA可能参与PA的生物合成,即WcCYP64-1,WcCYP64-2,WcCYP52和WcCYP_FUM15,它们在菌丝体中同时经历过表达和沉默。WcCYP64-1,WcCYP52和WcCYP_FUM15的过表达均增加了PA的含量,16α-羟基三甲酚酸,土利酸,和纤维素酸,而每个基因的沉默显著或轻微降低了这四种化合物的含量,表明它们参与PA的生物合成。此外,不同温度影响这些基因的表达和PA的形成。相比之下,WcCYP64-2的过表达和沉默不会改变这些化合物的形成。一起来看,这些发现确定了PA用于代谢工程的生物合成途径中更多的潜在步骤。
    Wolfiporia cocos is a medicinal mushroom used in China. It biosynthesizes pachymic acid (PA), a main therapeutic triterpene associated with therapies. Nowadays, the unknown PA biosynthesis leads to difficulties in increasing its content in W. cocos. Herein, we report sequencing, assembling, and characterization of the genome and several transcriptomes of W. cocos. Sequence mining determined candidate genes that encode lanosterol synthase, sterol O-acyltransferase, and sterol C-24 methyltransferase likely involved in the steps from lanosterol to PA. Gene cluster analysis identified four CYP450 cDNAs likely involved in the biosynthesis of PA, namely WcCYP64-1, WcCYP64-2, WcCYP52, and WcCYP_FUM15, which were subjected to both overexpression and silencing in mycelia. The overexpression of each of WcCYP64-1, WcCYP52 and WcCYP_FUM15 increased the content of PA, 16α-hydroxytrametenolic acid, eburicoic acid, and tumulosic acid, while the silencing of each gene either significantly or slightly decreased the contents of these four compounds, indicating their involvement in the PA biosynthesis. In addition, different temperatures affected the expression of these genes and the formation of PA. By contrast, the overexpression and silencing of WcCYP64-2 did not alter the formation of these compounds. Taken together, these findings determine more potential steps in the biosynthetic pathway of PA for metabolic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:小分子葡萄糖基转移酶功能丧失突变体ugt76b1表现出SID2-或NPR1依赖性和独立的植物免疫力增强方面,因此,SID2和NPR1独立需要FMO1。小分子葡萄糖基转移酶UGT76B1使水杨酸(SA)失活,异亮氨酸(ILA),和N-羟基羧酸(NHP)。ugt76b1丧失功能的植物表现出增强的防御状态。因此,我们感兴趣的是UGT76B1基因如何整合到防御途径中,以及是否所有影响都取决于SA和NHP.我们通过ugt76b1的转录组分析研究UGT76B1的整合。通过UGT76B1丢失而改变的转录本与公共转录组数据的比较揭示了两种SA反应,同工酶合成酶1/水杨酸诱导缺失2(ICS1/SID2)-和PR基因1(NPR1)依赖性的非表达,与UGT76B1在糖基化SA中的作用一致,和SA-无响应,SID2/NPR1独立基因。我们还发现UGT76B1对一组显示非SA反应性和独立于SID2/NPR1的感染调节的基因产生影响。ugt76b1对丁香假单胞菌的抗性增强部分独立于SID2和NPR1。相比之下,ugt76b1激活的电阻完全取决于FMO1编码NHP合成的黄素依赖性单氧酶1)。此外,FMO1在ugt76b1诱导的SID2-和NPR1-非依赖性病原体应答基因中排名第一,表明FMO1决定了ugt76b1的SID2-和NPR1-非依赖性效应。此外,遗传学研究表明,FMO1,增强疾病易感性1(EDS1),SA-JA串扰和ugt76b1的衰老发展需要SID2和NPR1,这表明EDS1和FMO1具有类似的作用,例如应激诱导的SA生物合成(SID2)或关键的SA信号传导调节剂NPR1。因此,UGT76B1影响SID2/NPR1依赖和独立的植物免疫,SID2/NPR1的独立性依赖于FMO1及其产品NHP,UGT76B1的另一种底物。
    CONCLUSIONS: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    假尿苷是在从细菌和病毒到多细胞植物和人类的各种生物体中发现的丰富的mRNA修饰。假尿苷谱分析的新进展为定位mRNA假尿苷化位点提供了定量工具。稀疏的生化研究确定了mRNA假尿苷化影响从出生到死亡的mRNA生命周期的大多数阶段的潜力。这一最新进展为深入研究特定mRNA假尿苷的分子和细胞功能奠定了基础。包括疾病。
    Pseudouridine is an abundant mRNA modification found in diverse organisms ranging from bacteria and viruses to multicellular plants and humans. New developments in pseudouridine profiling provide quantitative tools to map mRNA pseudouridylation sites. Sparse biochemical studies establish the potential for mRNA pseudouridylation to affect most stages of the mRNA life cycle from birth to death. This recent progress sets the stage for deeper investigations into the molecular and cellular functions of specific mRNA pseudouridines, including in disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    伪尿苷,最丰富的RNA修饰之一,通过独立或RNA指导的假尿苷合酶合成。这里,我们在rRNA中全面映射了假尿苷,古生菌中的tRNA和小RNA,并鉴定了Cbf5相关的H/ACARNA。通过基因缺失和体外修饰试验,我们确定了负责这些修饰的酶。S.islandicus中的假尿苷化机制由独立的酶aPus7和aPus10以及六种H/ACARNA指导的酶组成,这些酶占所有已鉴定的假尿苷。这些H/ACARNA指导rRNA中所有11个位点的修饰,tRNA中的两个位点,和CRISPRRNA中的两个位点。一个H/ACARNA通过靶向八个不同的位点显示出优异的多功能性。aPus7和aPus10负责修饰tRNA中的位置13、54和55。我们鉴定了四种缺乏下部茎和ACA基序的非典型H/ACARNA,并证实了它们在体内和体外的功能。有趣的是,非典型H/ACARNA可以以不依赖指导的方式被Cbf5修饰。我们的数据提供了古生菌中伪吡啶化的第一个全局视图,并揭示了意想不到的结构,基材,和古细菌H/ACARNPs的活动。
    Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    三萜是一类具有多种生物学功能的生物活性化合物,在植物防御生物胁迫中发挥关键作用。氧化角鲨烯环化酶(OSC)在三萜的生物合成中充当看门人。在这项研究中,我们利用烟草本氏异源表达系统来表征来自烟草的NaOSC1作为能够合成羽扇豆醇的多功能酶,丹玛尼二醇II,3-alpha,20-羽扇豆二醇,和7个其他三萜支架。我们还证明了NaOSC2是,相比之下,一种选择性酶,仅产生β-amyrin支架。通过病毒诱导的基因沉默和体外毒性试验,我们阐明了NaOSC1和NaOSC2在防御N.denata对抗Manducasexta幼虫中的作用。具有沉默的NaOSC1和NaOSC2的叶片的代谢组学和基于特征的分子网络分析揭示了3个潜在的三萜糖苷代谢物簇。有趣的是,在这些簇中被鉴定为三萜的特征与幼虫质量显着负相关。我们的研究强调了NaOSC1和NaOSC2在三萜生物合成的初始步骤中的关键作用。随后通过调节下游三萜糖苷化合物来影响对六重分枝杆菌的防御。
    Triterpenes are a class of bioactive compounds with diverse biological functions, playing pivotal roles in plant defense against biotic stressors. Oxidosqualene cyclases (OSCs) serve as gatekeepers in the biosynthesis of triterpenes. In this study, we utilized a Nicotiana benthamiana heterologous expression system to characterize NaOSC1 from Nicotiana attenuata as a multifunctional enzyme capable of synthesizing lupeol, dammarenediol II, 3-alpha,20-lupanediol, and 7 other triterpene scaffolds. We also demonstrated that NaOSC2 is, in contrast, a selective enzyme, producing only the β-amyrin scaffold. Through virus-induced gene silencing and in vitro toxicity assays, we elucidated the roles of NaOSC1 and NaOSC2 in the defense of N. attenuata against Manduca sexta larvae. Metabolomic and feature-based molecular network analyses of leaves with silenced NaOSC1 and NaOSC2 unveiled 3 potential triterpene glycoside metabolite clusters. Interestingly, features identified as triterpenes within these clusters displayed a significant negative correlation with larval mass. Our study highlights the pivotal roles of NaOSC1 and NaOSC2 from N. attenuata in the initial steps of triterpene biosynthesis, subsequently influencing defense against M. sexta through the modulation of downstream triterpene glycoside compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:据报道,在羊毛甾醇合酶(LSS)基因中具有双等位基因变异体的患者表现出如下表型:非综合征性低毛症,先天性白内障,和有智力残疾或发育迟缓的脱发。然而,LSS基因的基因型-表型相关性仍不完全清楚。
    方法:在本研究中,我们报道了一名患有先天性白内障伴低毛症的中国女孩。进行三外显子组测序以阐明患者的遗传原因。
    结果:我们鉴定了复合杂合变体(c.296G>A,p.G99D和c.1025T>G,p.I342S)在LSS基因中。两种变体在高度保守的氨基酸残基处改变了氨基酸编码,并且使用预测软件预测为有害的。
    结论:我们的报告扩展了LSS基因的变异谱,将有助于基因型-表型相关性研究。
    BACKGROUND: Patients with biallelic variants in the lanosterol synthase (LSS) gene has been reported to exhibit phenotypes as follows: non-syndromic form of hypotrichosis, congenital cataracts, and alopecia with intellectual disability or growth retardation. However, genotype-phenotype correlations in the LSS gene are still not completely clear.
    METHODS: In this study, we reported a Chinese girl who had congenital cataracts with hypotrichosis. The trio exome sequencing was performed to elucidate the genetic cause of the patient.
    RESULTS: We identified compound heterozygous variants (c.296G>A, p.G99D and c.1025T>G, p.I342S) in the LSS gene. Both variants altered the amino acid coding at highly conserved amino acid residues and were predicted to be deleterious using prediction software.
    CONCLUSIONS: Our report expands the spectrum of variants in the LSS gene and will be helpful for genotype-phenotype correlations study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA碱基的化学修饰代表了跨越生命所有域的普遍存在的活性。假尿嘧啶化是最常见的RNA修饰,在tRNA中观察到,rRNA,ncRNA和mRNA。假尿苷合酶或“PUS”酶包括那些依赖于向导RNA分子的酶和其他作为“独立”酶的酶。在后者中,一些已显示修饰mRNA转录物。尽管最近的研究已经确定了RNA作为PUS靶标的结构要求,PUS1识别mRNA中这些靶序列的机制尚不清楚.在这里,我们描述了与RNA靶标结合的酵母PUS1的晶体结构,我们将其鉴定为模型mRNA中PUS1相互作用的热点。该酶识别并结合螺旋RNA双链体中的两条链,并因此将含有靶尿苷的RNA引导至活性位点以用于随后的转录物的修饰。该研究还使我们能够显示相关PUS1酶及其相应的RNA靶特异性的差异,并推测PUS1结合和修饰mRNA或tRNA底物的基础。
    The chemical modification of RNA bases represents a ubiquitous activity that spans all domains of life. Pseudouridylation is the most common RNA modification and is observed within tRNA, rRNA, ncRNA and mRNAs. Pseudouridine synthase or \'PUS\' enzymes include those that rely on guide RNA molecules and others that function as \'stand-alone\' enzymes. Among the latter, several have been shown to modify mRNA transcripts. Although recent studies have defined the structural requirements for RNA to act as a PUS target, the mechanisms by which PUS1 recognizes these target sequences in mRNA are not well understood. Here we describe the crystal structure of yeast PUS1 bound to an RNA target that we identified as being a hot spot for PUS1-interaction within a model mRNA at 2.4 Å resolution. The enzyme recognizes and binds both strands in a helical RNA duplex, and thus guides the RNA containing the target uridine to the active site for subsequent modification of the transcript. The study also allows us to show the divergence of related PUS1 enzymes and their corresponding RNA target specificities, and to speculate on the basis by which PUS1 binds and modifies mRNA or tRNA substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    因为嘌呤核苷酸对所有生命都至关重要,微生物和人类如何代谢嘌呤之间的差异可以用于开发抗菌疗法。虽然人类在10步途径中生物合成嘌呤核苷酸,大多数微生物利用额外的第11酶活性。人类酶,氨基咪唑核糖核苷酸(AIR)羧化酶直接产生产物4-羧基-5-氨基咪唑核糖核苷酸(CAIR)。大多数微生物,然而,需要两种独立的酶,合成酶(PurK)和变位酶(PurE),并通过中间,N5-CAIR。针对这些差异的治疗方法的发展,我们已经解决了人类病原体嗜肺军团菌(LpPurE)和伯克霍尔德氏菌(BcPurE)的N5-CAIR变位酶的晶体结构,并使用结构指导的方法来鉴定抑制剂。结构分析揭示了高度保守的折叠和活性位点结构。使用这些数据,和三个额外的PuE酶结构,我们筛选了一个FDA批准的化合物库,并鉴定了一组25个候选化合物用于进一步分析.其中,我们鉴定了几种新的PurE抑制剂,其IC50值为微摩尔浓度.这些化合物中的几种,包括α1阻断剂阿夫唑嗪,比人类同源物更有效地抑制微生物PuE酶。这些结构和新描述的PurE抑制剂是有助于进一步研究该酶的有价值的工具,并为开发靶向人类和微生物嘌呤代谢差异的化合物奠定了基础。
    Because purine nucleotides are essential for all life, differences between how microbes and humans metabolize purines can be exploited for the development of antimicrobial therapies. While humans biosynthesize purine nucleotides in a 10-step pathway, most microbes utilize an additional 11th enzymatic activity. The human enzyme, aminoimidazole ribonucleotide (AIR) carboxylase generates the product 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) directly. Most microbes, however, require two separate enzymes, a synthetase (PurK) and a mutase (PurE), and proceed through the intermediate, N5-CAIR. Toward the development of therapeutics that target these differences, we have solved crystal structures of the N5-CAIR mutase of the human pathogens Legionella pneumophila (LpPurE) and Burkholderia cenocepacia (BcPurE) and used a structure-guided approach to identify inhibitors. Analysis of the structures reveals a highly conserved fold and active site architecture. Using this data, and three additional structures of PurE enzymes, we screened a library of FDA-approved compounds in silico and identified a set of 25 candidates for further analysis. Among these, we identified several new PurE inhibitors with micromolar IC50 values. Several of these compounds, including the α1-blocker Alfuzosin, inhibit the microbial PurE enzymes much more effectively than the human homologue. These structures and the newly described PurE inhibitors are valuable tools to aid in further studies of this enzyme and provide a foundation for the development of compounds that target differences between human and microbial purine metabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号