Mesh : Catalytic Domain Molecular Dynamics Simulation Intramolecular Transferases / metabolism chemistry genetics Biocatalysis Mutagenesis, Site-Directed

来  源:   DOI:10.1021/acs.jcim.4c00297

Abstract:
β-Amyrin synthase (bAS) is a representative plant oxidosqualene cyclase (OSC), and previous studies have identified many functional residues and mutants that can alter its catalytic activity. However, the regulatory mechanism of the active site architecture for adjusting the catalytic activity remains unclear. In this study, we investigate the function of key residues and their regulatory effects on the catalytic activity of Glycyrrhiza glabra β-amyrin synthase (GgbAS) through molecular dynamics simulations and site-directed mutagenesis experiments. We identified the plasticity residues located in two active site regions and explored the interactions between these residues and tetracyclic/pentacyclic intermediates. Based on computational and experimental results, we further categorize these plasticity residues into three types: effector, adjuster, and supporter residues, according to their functions in the catalytic process. This study provides valuable insights into the catalytic mechanism and active site plasticity of GgbAS, offering important references for the rational enzyme engineering of other OSC enzyme.
摘要:
β-Amyrin合酶(bAS)是具有代表性的植物氧化角鲨烯环化酶(OSC),和以前的研究已经确定了许多功能残基和突变体,可以改变其催化活性。然而,活性位点结构调节催化活性的调节机制尚不清楚。在这项研究中,我们通过分子动力学模拟和定点诱变实验研究了关键残基的功能及其对甘草β-淀粉合成酶(GgbAS)催化活性的调控作用。我们确定了位于两个活性位点区域的可塑性残基,并探索了这些残基与四环/五环中间体之间的相互作用。根据计算和实验结果,我们进一步将这些可塑性残基分为三种类型:效应子,调节器,和载体残留物,根据它们在催化过程中的作用。这项研究为GgbAS的催化机理和活性位点可塑性提供了有价值的见解,为其他OSC酶的合理酶工程提供了重要参考。
公众号