{Reference Type}: Journal Article {Title}: Minor Hydroxylated Triterpenoids Produced in Engineered Yeast by the Enzymes OSC and CYP716s from the Plant Enkianthus chinensis and Their Anti-Inflammatory and Hepatoprotective Activities. {Author}: Wang HQ;Shi QY;Ma SG;Yu SS; {Journal}: J Nat Prod {Volume}: 87 {Issue}: 4 {Year}: 2024 04 26 {Factor}: 4.803 {DOI}: 10.1021/acs.jnatprod.3c01291 {Abstract}: Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6β-OH derivatives, marking the first confirmed C-6β hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1β and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 μM.