single-molecule force spectroscopy

单分子力谱
  • 文章类型: Journal Article
    吞噬作用是人体免疫系统的基本机制,其中病原体被免疫细胞消除。CCN1蛋白通过促进αVβ3整联蛋白与细菌肽聚糖(PG)的桥接,在金黄色葡萄球菌的吞噬作用中起着重要作用,通过未知的机械力。这里,我们采用单分子实验来解开PG-CCN1-αVβ3三元复合物的纳米力学。当CCN1以中等的力(~60pN)结合αVβ3整合素时,在CCN1和PG之间观察到更高的结合强度(高达800pN)。值得注意的是,CCN1-αVβ3和CCN1-PG键的强度通过拉伸载荷显着增强,有利于机械应力诱导CCN1中隐蔽整合素结合位点的暴露以及CCN1凝集素位点与PG聚糖链单糖之间的多价结合的模型。
    Phagocytosis is an essential mechanism of the human immune system where pathogens are eliminated by immune cells. The CCN1 protein plays an important role in the phagocytosis of Staphylococcus aureus by favoring the bridging of the αVβ3 integrin to the bacterial peptidoglycan (PG), through mechanical forces that remain unknown. Here, we employ single-molecule experiments to unravel the nanomechanics of the PG-CCN1-αVβ3 ternary complex. While CCN1 binds αVβ3 integrins with moderate force (∼60 pN), much higher binding strengths (up to ∼800 pN) are observed between CCN1 and PG. Notably, the strength of both CCN1-αVβ3 and CCN1-PG bonds is dramatically enhanced by tensile loading, favoring a model in which mechanical stress induces the exposure of cryptic integrin binding sites in CCN1 and multivalent binding between CCN1 lectin sites and monosaccharides along the PG glycan chains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    超分子力学团通常表现出比共价对应物低得多的机械强度,强度通常在100pN左右,显著低于共价键的nN尺度强度。受葫芦[7]脲(CB[7])-己酸-异喹啉(HIQ)复合物的缓慢解离动力学的启发,我们发现电荷-偶极排斥可以用来产生强大的超分子动力团。在其-COO-状态下激活时,CB[7]-HIQ复合物具有〜700pN的高机械强度,与弱共价键如Au-S键或硫醇-马来酰亚胺加合物相当。CB[7]-HIQ复合物的强度也可以通过pH逐渐调节,在其-COOH状态下的最小值为〜150pN,类似于普通的超分子共轭物。这项研究可能会为结合共价和超分子系统优点的超分子结构的发展铺平道路。
    Supramolecular mechanophores typically exhibit much lower mechanical strengths than covalent counterparts, with strengths usually around 100 pN, which is significantly lower than the nN-scale strength of covalent bonds. Inspired by the slow dissociation kinetics of the cucurbit[7]uril (CB[7])-hexanoate-isoquinoline (HIQ) complex, we discovered that charge-dipole repulsion can be utilized to create strong supramolecular mechanophores. When activated at its -COO- state, the CB[7]-HIQ complex exhibits a high mechanical strength of ~700 pN, comparable to weak covalent bonds such as Au-S bonds or a thiol-maleimide adducts. The strength of the CB[7]-HIQ complex can also be tuned with pH in a gradual manner, with a minimum value of ~150 pN at its -COOH state, similar to an ordinary supramolecular conjugate. This research may pave the way for the development of supramolecular architectures that combine the advantages of covalent and supramolecular systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解细胞力传递动力学在机械生物学中至关重要。我们开发了基于DNA的ForceChrono探针来测量力的大小,持续时间,和单分子水平的负载率在活细胞内。ForceChrono探针通过在动态细胞环境中进行直接测量来规避体外单分子力光谱学的局限性。我们的发现显示整合素的力加载速率为0.5-2pN/s,持续时间从新生粘连的数十秒到成熟粘连的约100s。探针的稳健和可逆设计允许在细胞经历形态转变时连续监测这些动态变化。此外,通过分析突变,删除,或药物干预会影响这些参数,我们可以推断特定蛋白质或结构域在细胞机械转导中的功能作用。ForceChrono探测器提供了对机械力动力学的详细见解,提高我们对细胞力学和机械传导的分子机制的理解。
    Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe\'s robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质-蛋白质复合物的机械稳定性可以根据施加力的方向而变化。在这里,我们研究了称为Affibody的治疗性非免疫球蛋白支架与免疫检查点蛋白PD-L1的胞外域之间的分子复合物的各向异性机械稳定性。我们使用了单分子AFM力谱(AFM-SMFS)与生物正交可点击肽柄的组合,剪切应力珠粘附测定,分子建模,并进行了分子动力学(SMD)模拟,以了解Affibody:(PD-L1)复合物的机械稳定性的拉动点依赖性。我们观察到不同的机械响应取决于锚点。例如,从Affibody上的第22号残基拉出,产生了归因于PD-L1部分展开的中间展开事件,而从Affibody的N端拉出,则产生了力激活的捕获键行为。我们发现从Affibody上的#22或#47残留物中拉动产生了最高的破裂力,在~104-105pN/sec的加载速率下,复合体在高达190pN的情况下破裂,与低力N端拉动相比,机械稳定性提高了约4倍。SMD模拟提供了一致的破裂力趋势,并通过力传播网络的可视化提供了机械见解。这些结果证明了治疗性蛋白质-蛋白质界面的机械稳定性可以通过分子内锚点的知情选择来控制。对药物递送载体中最佳生物缀合策略的影响。
    Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here we investigated the anisotropic mechanical stability of a molecular complex between a therapeutic non-immunoglobulin scaffold called Affibody and the extracellular domain of the immune checkpoint protein PD-L1. We used a combination of single-molecule AFM force spectroscopy (AFM-SMFS) with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) simulations to understand the pulling point dependency of mechanostability of the Affibody:(PD-L1) complex. We observed diverse mechanical responses depending on the anchor point. For example, pulling from residue #22 on Affibody generated an intermediate unfolding event attributed to partial unfolding of PD-L1, while pulling from Affibody\'s N-terminus generated force-activated catch bond behavior. We found that pulling from residue #22 or #47 on Affibody generated the highest rupture forces, with the complex breaking at up to ~ 190 pN under loading rates of ~104-105 pN/sec, representing a ~4-fold increase in mechanostability as compared with low force N-terminal pulling. SMD simulations provided consistent tendencies in rupture forces, and through visualization of force propagation networks provided mechanistic insights. These results demonstrate how mechanostability of therapeutic protein-protein interfaces can be controlled by informed selection of anchor points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近对机械自由基的研究为自我生长和自适应响应材料提供了有价值的见解。通常,在没有力的情况下,机械载体必须保持惰性,但在聚合物网络内的其他连接之前,对外部张力迅速做出反应。偶氮化合物表现出机械稳定性和力触发反应性的有希望的组合,使它们广泛用作力响应材料中的机械自由基。然而,偶氮化合物的活化条件和行为还有待定量探索。在这项研究中,我们使用单分子力谱研究了三种偶氮化合物的机械强度。我们的结果表明,这些化合物表现出~500到1000pN的断裂力,加载速率为3×104pNs-1。重要的是,这些机械载体表现出独特的动力学特性。它们独特的机械属性使偶氮键断裂和自由基产生,然后在聚合物网络变形期间引起整个材料的主要聚合物骨架损坏。对机械载体的这种基本理解对于开发自生长材料及其相关应用具有重要意义。
    Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属配位键,一类高度可调的动态非共价相互作用,是各种基于蛋白质的天然材料的功能的关键,并已成为产生强大的结合基序,艰难,和自我修复的生物材料。虽然天然蛋白质使用金属配位键簇,合成材料经常使用单独的键,导致机械强度较弱的材料。为了克服这种电流限制,我们合理地设计了一系列弹性蛋白样多肽模板,这些模板具有形成越来越多的分子间组氨酸-Ni2金属配位键的能力。使用单分子力谱和转向分子动力学模拟,我们表明,具有三个组氨酸残基的模板表现出异质破裂途径,包括至少两个键的同时断裂,其断裂力大于添加剂。开发的方法和见解提高了我们对稳定金属配位蛋白质的分子相互作用的理解,并为设计新的强者,具有广泛耗散时间尺度的金属配位材料。
    Metal-coordination bonds, a highly tunable class of dynamic noncovalent interactions, are pivotal to the function of a variety of protein-based natural materials and have emerged as binding motifs to produce strong, tough, and self-healing bioinspired materials. While natural proteins use clusters of metal-coordination bonds, synthetic materials frequently employ individual bonds, resulting in mechanically weak materials. To overcome this current limitation, we rationally designed a series of elastin-like polypeptide templates with the capability of forming an increasing number of intermolecular histidine-Ni2+ metal-coordination bonds. Using single-molecule force spectroscopy and steered molecular dynamics simulations, we show that templates with three histidine residues exhibit heterogeneous rupture pathways, including the simultaneous rupture of at least two bonds with more-than-additive rupture forces. The methodology and insights developed improve our understanding of the molecular interactions that stabilize metal-coordinated proteins and provide a general route for the design of new strong, metal-coordinated materials with a broad spectrum of dissipative time scales.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    稳定固定蛋白质的典型方法通常涉及对硅基材料进行耗时的表面修饰,以实现特异性结合,而非特异性吸附方法速度更快,但通常不稳定。在这里,我们融合了二氧化硅结合蛋白,Si-tag,目标蛋白,以便目标蛋白可以在单个步骤中直接附着到二氧化硅底物上,显着简化固定过程。通过原子力显微镜确定,在单分子水平上,Si标签和玻璃基板之间的粘附力约为400-600pN。大于大多数蛋白质的展开力。当从C-末端拉时,与从N-末端拉时相比,Si-标签的粘附力显示出轻微的增加。此外,硅标签在玻璃表面上的粘附力略高于氮化硅探针上的粘附力。Si-tag的结合特性受环境因素的影响不明显,包括pH值,盐浓度,和温度。此外,Si-tag涂层水凝胶与玻璃基材之间的宏观粘合力比未改性水凝胶高40倍。因此,Si标签,以其强大的二氧化硅基质结合能力,提供了一种有用的工具,可作为出色的融合标签,用于将蛋白质快速且机械坚固地固定在二氧化硅上以及用于二氧化硅结合材料的表面涂层。
    Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag\'s adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从细菌粘附到肌肉力学和机械转导过程,机械力对于许多生物学环境中的蛋白质功能至关重要。因此,理解机械力如何控制蛋白质活性已经发展成为一个核心科学问题。在这种情况下,单分子磁镊子最近已经成为一种有价值的实验工具,提供在生理相关的力量和时间尺度上测量单个蛋白质的能力。在这一章中,我们为我们的磁带头镊子仪器的组装和操作提供了详细的协议,专门为研究蛋白质动力学而定制。我们的仪器拥有简化的显微镜设计,并采用磁带头作为力产生装置,促进精确的力控制并增强其时间稳定性,能够在几个小时甚至几天的延长时间尺度上研究单一蛋白质力学。此外,其直截了当且具有成本效益的设计确保了其对更广泛的科学界的可及性。我们预计该技术将在不断发展的机械生物学领域引起广泛的兴趣,并希望本章将为该技术提供便利的可访问性。
    Mechanical forces are critical to protein function across many biological contexts-from bacterial adhesion to muscle mechanics and mechanotransduction processes. Hence, understanding how mechanical forces govern protein activity has developed into a central scientific question. In this context, single-molecule magnetic tweezers has recently emerged as a valuable experimental tool, offering the capability to measure single proteins over physiologically relevant forces and timescales. In this chapter, we present a detailed protocol for the assembly and operation of our magnetic tape head tweezers instrument, specifically tailored to investigate protein dynamics. Our instrument boasts a simplified microscope design and incorporates a magnetic tape head as the force-generating apparatus, facilitating precise force control and enhancing its temporal stability, enabling the study of single protein mechanics over extended timescales spanning several hours or even days. Moreover, its straightforward and cost-effective design ensures its accessibility to the wider scientific community. We anticipate that this technique will attract widespread interest within the growing field of mechanobiology and expect that this chapter will provide facilitated accessibility to this technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CLEC12A,参与免疫稳态的C型凝集素受体家族成员,识别从垂死细胞释放的MSU晶体。然而,CLEC12A介导的MSU晶体识别的分子机制仍不清楚.在这里,我们报道了人CLEC12A-CTLD的晶体结构,并在CLEC12A-CTLD上鉴定了一个独特的"基本补丁"位点,该位点是MSU晶体结合所必需的.同时,我们使用单分子力谱测定了CLEC12A-CTLD和MSU晶体之间的相互作用强度。此外,我们发现CLEC12A聚集在细胞膜上,似乎是MSU晶体的内在化受体。总之,这些发现为理解CLEC12A和MSU晶体之间相互作用的分子机制提供了机制见解。
    CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique \"basic patch\" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚乙二醇(PEG)是一种具有良好生物相容性和低成本的人造聚合物,具有广泛的应用。在这项研究中,基于单分子力谱从微观角度研究了PEG单链对不同离子浓度的动态响应,揭示了超越传统传感器设计范式的独特交互。在低浓度的氯化钾下,PEG单链表现出刚性的逐渐降低,while,相反,高浓度会导致刚度逐渐增加。这种二分法是深刻理解不同离子环境下PEG构象动力学的基石。利用PEG单链对离子浓度变化的显著敏感性,我们引入创新的传感器设计思想。根植于PEG单链的适应性,这些传感器设计超越了传统应用,环境监测方面有前途的进步,healthcare,和材料科学。
    Polyethylene glycol (PEG) is an artificial polymer with good biocompatibility and a low cost, which has a wide range of applications. In this study, the dynamic response of PEG single chains to different ion concentrations was investigated from a microscopic point of view based on single-molecule force spectroscopy, revealing unique interactions that go beyond the traditional sensor-design paradigm. Under low concentrations of potassium chloride, PEG single chains exhibit a gradual reduction in rigidity, while, conversely, high concentrations induce a progressive increase in rigidity. This dichotomy serves as the cornerstone for a profound understanding of PEG conformational dynamics under diverse ion environments. Capitalizing on the remarkable sensitivity of PEG single chains to ion concentration shifts, we introduce innovative sensor-design ideas. Rooted in the adaptive nature of PEG single chains, these sensor designs extend beyond the traditional applications, promising advancements in environmental monitoring, healthcare, and materials science.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号