%0 Journal Article %T A Strong Supramolecular Mechanophore with Controlled Mechanical Strength. %A Xia Y %A Wang G %A He C %A Chen H %J Angew Chem Int Ed Engl %V 0 %N 0 %D 2024 Jun 13 %M 38869842 %F 16.823 %R 10.1002/anie.202406738 %X Supramolecular mechanophores typically exhibit much lower mechanical strengths than covalent counterparts, with strengths usually around 100 pN, which is significantly lower than the nN-scale strength of covalent bonds. Inspired by the slow dissociation kinetics of the cucurbit[7]uril (CB[7])-hexanoate-isoquinoline (HIQ) complex, we discovered that charge-dipole repulsion can be utilized to create strong supramolecular mechanophores. When activated at its -COO- state, the CB[7]-HIQ complex exhibits a high mechanical strength of ~700 pN, comparable to weak covalent bonds such as Au-S bonds or thiol-maleimide adducts. The strength of the CB[7]-HIQ complex can also be tuned with pH in a gradual manner, with a minimum value of ~150 pN at its -COOH state, similar to an ordinary supramolecular conjugate. This research may pave the way for the development of supramolecular architectures that combine the advantages of covalent and supramolecular systems.