single-molecule force spectroscopy

单分子力谱
  • 文章类型: Journal Article
    蛋白质-蛋白质复合物的机械稳定性可以根据施加力的方向而变化。在这里,我们研究了称为Affibody的治疗性非免疫球蛋白支架与免疫检查点蛋白PD-L1的胞外域之间的分子复合物的各向异性机械稳定性。我们使用了单分子AFM力谱(AFM-SMFS)与生物正交可点击肽柄的组合,剪切应力珠粘附测定,分子建模,并进行了分子动力学(SMD)模拟,以了解Affibody:(PD-L1)复合物的机械稳定性的拉动点依赖性。我们观察到不同的机械响应取决于锚点。例如,从Affibody上的第22号残基拉出,产生了归因于PD-L1部分展开的中间展开事件,而从Affibody的N端拉出,则产生了力激活的捕获键行为。我们发现从Affibody上的#22或#47残留物中拉动产生了最高的破裂力,在~104-105pN/sec的加载速率下,复合体在高达190pN的情况下破裂,与低力N端拉动相比,机械稳定性提高了约4倍。SMD模拟提供了一致的破裂力趋势,并通过力传播网络的可视化提供了机械见解。这些结果证明了治疗性蛋白质-蛋白质界面的机械稳定性可以通过分子内锚点的知情选择来控制。对药物递送载体中最佳生物缀合策略的影响。
    Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here we investigated the anisotropic mechanical stability of a molecular complex between a therapeutic non-immunoglobulin scaffold called Affibody and the extracellular domain of the immune checkpoint protein PD-L1. We used a combination of single-molecule AFM force spectroscopy (AFM-SMFS) with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) simulations to understand the pulling point dependency of mechanostability of the Affibody:(PD-L1) complex. We observed diverse mechanical responses depending on the anchor point. For example, pulling from residue #22 on Affibody generated an intermediate unfolding event attributed to partial unfolding of PD-L1, while pulling from Affibody\'s N-terminus generated force-activated catch bond behavior. We found that pulling from residue #22 or #47 on Affibody generated the highest rupture forces, with the complex breaking at up to ~ 190 pN under loading rates of ~104-105 pN/sec, representing a ~4-fold increase in mechanostability as compared with low force N-terminal pulling. SMD simulations provided consistent tendencies in rupture forces, and through visualization of force propagation networks provided mechanistic insights. These results demonstrate how mechanostability of therapeutic protein-protein interfaces can be controlled by informed selection of anchor points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CLEC12A,参与免疫稳态的C型凝集素受体家族成员,识别从垂死细胞释放的MSU晶体。然而,CLEC12A介导的MSU晶体识别的分子机制仍不清楚.在这里,我们报道了人CLEC12A-CTLD的晶体结构,并在CLEC12A-CTLD上鉴定了一个独特的"基本补丁"位点,该位点是MSU晶体结合所必需的.同时,我们使用单分子力谱测定了CLEC12A-CTLD和MSU晶体之间的相互作用强度。此外,我们发现CLEC12A聚集在细胞膜上,似乎是MSU晶体的内在化受体。总之,这些发现为理解CLEC12A和MSU晶体之间相互作用的分子机制提供了机制见解。
    CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique \"basic patch\" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚乙二醇(PEG)是一种具有良好生物相容性和低成本的人造聚合物,具有广泛的应用。在这项研究中,基于单分子力谱从微观角度研究了PEG单链对不同离子浓度的动态响应,揭示了超越传统传感器设计范式的独特交互。在低浓度的氯化钾下,PEG单链表现出刚性的逐渐降低,while,相反,高浓度会导致刚度逐渐增加。这种二分法是深刻理解不同离子环境下PEG构象动力学的基石。利用PEG单链对离子浓度变化的显著敏感性,我们引入创新的传感器设计思想。根植于PEG单链的适应性,这些传感器设计超越了传统应用,环境监测方面有前途的进步,healthcare,和材料科学。
    Polyethylene glycol (PEG) is an artificial polymer with good biocompatibility and a low cost, which has a wide range of applications. In this study, the dynamic response of PEG single chains to different ion concentrations was investigated from a microscopic point of view based on single-molecule force spectroscopy, revealing unique interactions that go beyond the traditional sensor-design paradigm. Under low concentrations of potassium chloride, PEG single chains exhibit a gradual reduction in rigidity, while, conversely, high concentrations induce a progressive increase in rigidity. This dichotomy serves as the cornerstone for a profound understanding of PEG conformational dynamics under diverse ion environments. Capitalizing on the remarkable sensitivity of PEG single chains to ion concentration shifts, we introduce innovative sensor-design ideas. Rooted in the adaptive nature of PEG single chains, these sensor designs extend beyond the traditional applications, promising advancements in environmental monitoring, healthcare, and materials science.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    配体诱导的构象变化对许多膜蛋白的功能至关重要,并且起因于许多分子内相互作用。在模型膜蛋白细菌视紫红质(bR)的光循环中,视网膜对光子的吸收会触发构象级联,从而导致质子穿过细胞膜。虽然几十年的光谱学和结构研究已经以复杂的细节探索了这种光循环,作为蛋白质运动基础的分子内能量学的变化仍然无法进行实验定量。这里,我们使用基于原子力显微镜的单分子力谱在毫秒时间尺度上测量了这些能量。准确地说,定时光脉冲触发了bR光循环,同时我们测量了bR的G螺旋末端8个氨基酸区域的平衡解折叠和重折叠。在bR光循环的“开放”部分中,当EF-螺旋对从G螺旋的这一端移开约9µ时,这些动力学发生了变化。在~60%的数据中,我们观察到3.4±0.3kcal/mol的突然光致失稳,持续38±3ms。这种不稳定的动力学和pH依赖性与bR的开放相的先前测量一致。光诱导的去稳定化的频率随着光照的持续时间而增加,并且在被认为在开放阶段捕获bR的三重突变体(D96G/F171C/F219L)中大大降低。在其他~40%的数据中,光激发出乎意料地稳定了更长寿命的推定错误折叠状态。通过这项工作,我们建立了一种通用的单分子力谱方法,用于测量膜蛋白中配体诱导的能量和寿命。
    Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR\'s G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the \"open\" portion of bR\'s photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR\'s open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    几丁质是最常见的多糖之一,在真菌的细胞壁以及昆虫和水生生物的外壳中作为骨架丰富。甲壳质如何响应pH值的机制对于精确控制酿造和智能甲壳质材料的设计至关重要。然而,这种分子机制仍然是个谜。单分子研究的结果,包括单分子力谱(SMFS),AFM成像,和分子动力学(MD)模拟,已经表明几丁质分子的机械和构象行为显示出令人惊讶的pH响应性。这可以与如何,在天然水溶液中,几丁质倾向于形成更松弛的扩散构象,并在酸性条件下在低拉伸力下显示出相当大的弹性。然而,它的分子链在碱性溶液中塌陷成刚性的小球。结果表明,甲壳素的链态可以通过分子间和分子内H键的比例来调节,通过不同pH值下链上的水桥数量确定。这项基础研究可能有助于了解pH胁迫下真菌的细胞活性以及基于几丁质的药物载体的设计。
    Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质插入和折叠到膜中对于细胞活力至关重要。然而,插入酶的详细贡献仍然难以捉摸。这里,我们监测插入酶YidC如何引导多位蜜二糖通透酶MelB折叠到膜中。使用条件耗尽的大肠杆菌菌株的体内实验表明,如果YidC位于细胞质膜中,则MelB可以在不存在SecYEG的情况下插入。体外单分子力谱显示,MelB底物本身形成两个折叠核,结构片段从这些折叠核逐步插入膜中。然而,错误折叠占主导地位,特别是在连接MelB的假对称α-螺旋域的结构区域中。这里,YidC在加速和陪伴两个MelB折叠芯的逐步插入和折叠过程中起着重要作用。我们的发现揭示了YidC的伴侣和插入酶活性在复杂的多位膜蛋白的多方面折叠过程中具有很大的灵活性。
    The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非特异性相互作用在生理活动中起重要作用,表面化学改性,和人造粘合剂。然而,非特异性有时会导致棘手的问题,包括表面结垢,降低目标特异性,和单分子测量中的伪影。调节液体pH值,使用蛋白质阻断添加剂,添加非离子表面活性剂,或增加盐浓度是最小化非特异性结合以获得高质量数据的常用方法。这里,我们报告说,接枝异形聚乙二醇(Y形PEG)与两个惰性末端可以显着降低非特异性结合。作为一个概念证明,我们进行了单分子力谱和荧光染色成像实验,以验证Y型PEG阻断非特异性相互作用的可行性.我们的结果表明,Y形PEG可以作为一个突出和有效的候选人,以尽量减少非特异性的科学和生物医学应用。
    Nonspecific interactions play a significant role in physiological activities, surface chemical modification, and artificial adhesives. However, nonspecificity sometimes causes sticky problems, including surface fouling, decreased target specificity, and artifacts in single-molecule measurements. Adjusting the liquid pH, using protein-blocking additives, adding nonionic surfactants, or increasing the salt concentration are common methods to minimize nonspecific binding to achieve high-quality data. Here, we report that grafting heteromorphic polyethylene glycol (Y-shape PEG) with two inert terminates could noticeably decrease nonspecific binding. As a proof-of-concept, we performed single-molecule force spectroscopy and fluorescence staining imaging experiments to verify the feasibility of Y-shape PEG in blocking nonspecific interactions. Our results indicate that Y-shape PEG could serve as a prominent and efficient candidate to minimize nonspecificity for scientific and biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Vimentin,一种蛋白质,构成细胞骨架的一部分,参与细胞功能的许多方面,最近被确定为严重急性呼吸道综合症冠状病毒2(SARS-CoV-2)的细胞表面附着位点。本研究使用原子力显微镜和石英晶体微天平研究了SARS-CoV-2S1糖蛋白受体结合域(S1RBD)与人波形蛋白之间结合的物理化学性质。S1RBD和波形蛋白蛋白的分子相互作用使用连接到切割的云母或金微天平传感器以及存在于活细胞表面的天然细胞外形式的波形蛋白单层进行定量。波形蛋白和S1RBD之间的特异性相互作用的存在也通过计算机模拟研究得到证实。这项工作提供了新的证据,表明细胞表面波形蛋白(CSV)是SARS-CoV-2病毒附着的位点,并参与了Covid-19的发病机理,为治疗对策提供了潜在的靶标。
    Vimentin, a protein that builds part of the cytoskeleton and is involved in many aspects of cellular function, was recently identified as a cell surface attachment site for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The present study investigated the physicochemical nature of the binding between the SARS-CoV-2 S1 glycoprotein receptor binding domain (S1 RBD) and human vimentin using atomic force microscopy and a quartz crystal microbalance. The molecular interactions of S1 RBD and vimentin proteins were quantified using vimentin monolayers attached to the cleaved mica or a gold microbalance sensor as well as in its native extracellular form present on the live cell surface. The presence of specific interactions between vimentin and S1 RBD was also confirmed using in silico studies. This work provides new evidence that cell-surface vimentin (CSV) functions as a site for SARS-CoV-2 virus attachment and is involved in the pathogenesis of Covid-19, providing a potential target for therapeutic countermeasures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    羧酸桥联二铁蛋白属于参与不同生理过程的蛋白质家族。这些蛋白质共享保守的EXXH基序,它提供羧酸酯桥,对金属结合至关重要。这里,我们选择从头设计的正铁蛋白DFsc,具有两个EXXH基序的四螺旋蛋白作为模型蛋白,研究羧酸盐桥接的双金属结合位点的稳定性。通过基于AFM的单分子力谱获得了DFsc中di-Zn位点的机械和动力学性质。Zn-DFSC显示出相当大的断裂力~200pN,而载脂蛋白是机械不稳定的。此外,观察到多个破裂路径具有不同的概率,表明EXXH基羧酸盐桥接金属位点的重要性。这些结果证明羧酸盐桥接的双金属位点是机械稳定的,并且提高了我们对这种重要类型的金属蛋白的理解。本文受版权保护。保留所有权利。
    Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蜜二糖通透酶MelB是主要促进剂超家族的Na偶联转运蛋白。然而,半乳糖苷和阳离子的共生机制仍未完全理解,尤其是在结构层面。这里,我们使用单分子力谱研究了基质诱导的鼠伤寒沙门氏菌MelB的结构变化。在没有底物的情况下,MelB同样填充了两个不同的状态,从中显示出更高的机械结构稳定性,并具有细胞质中环C3的额外稳定。在蜜二糖或偶合Na+阳离子的存在下,然而,MelB越来越多地填充机械上不稳定的状态,它显示了一个不稳定的中间环C3。在存在底物和共底物的情况下,这种机械上不太稳定的状态是主要的。我们的发现描述了两种底物如何引导MelB转运蛋白填充两种不同的机械稳定状态,并为MelB催化的半乳糖苷/阳离子共生的交替进入作用提供机械见解。
    The melibiose permease MelB is a well-studied Na+-coupled transporter of the major facilitator superfamily. However, the symport mechanism of galactosides and cations is still not fully understood, especially at structural levels. Here, we use single-molecule force spectroscopy to investigate substrate-induced structural changes of MelB from Salmonella typhimurium. In the absence of substrate, MelB equally populates two different states, from which one shows higher mechanical structural stability with additional stabilization of the cytoplasmic middle-loop C3. In the presence of either melibiose or a coupling Na+-cation, however, MelB increasingly populates the mechanically less stable state, which shows a destabilized middle-loop C3. In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant. Our findings describe how both substrates guide MelB transporters to populate two different mechanically stabilized states, and contribute mechanistic insights to the alternating-access action for the galactoside/cation symport catalyzed by MelB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号